
Jolokia - Reference Documentation

Version 1.7.0

Copyright © 2010 - 2021 Roland Huß

1. Introduction . 1
2. Architecture . 2

2.1. Agent mode . 2
2.2. Proxy Mode . 2

3. Agents . 4
3.1. Java EE Agent (WAR) . 5

3.1.1. Installation and Configuration . 5
3.1.2. Security Setup . 11
3.1.3. Programmatic usage of the Jolokia agent servlet . 11

3.2. OSGi Agents . 12
3.2.1. jolokia-osgi.jar . 12
3.2.2. Running on Glassfish v3 upwards . 18
3.2.3. jolokia-osgi-bundle.jar . 19
3.2.4. Programmatic servlet registration . 19
3.2.5. Restrictor service . 19

3.3. Mule Agent . 20
3.4. JVM Agent . 22

3.4.1. Jolokia as JVM Agent . 22
3.4.2. Attaching a Jolokia agent on the fly . 30

4. Security . 34
4.1. Policy based security . 34

4.1.1. IP based restrictions . 34
4.1.2. Commands . 34
4.1.3. Allow and deny access to certain MBeans . 35
4.1.4. HTTP method restrictions . 35
4.1.5. Cross-Origin Resource Sharing (CORS) restrictions 36
4.1.6. Example for a security policy . 36
4.1.7. Policy Location . 37

4.2. Jolokia Restrictors . 38
5. Proxy Mode . 39

5.1. Limitations of proxy mode . 40
6. Jolokia Protocol . 41

6.1. Requests and Responses . 41
6.1.1. GET requests . 41
6.1.2. POST requests . 43
6.1.3. Responses . 44
6.1.4. Paths . 45

6.2. Jolokia operations . 46
6.2.1. Reading attributes (read) . 46
6.2.2. Writing attributes (write) . 50
6.2.3. Executing JMX operations (exec) . 52
6.2.4. Searching MBeans (search) . 54
6.2.5. Listing MBeans (list) . 55
6.2.6. Getting the agent version (version) . 58

6.3. Processing parameters . 59
6.4. Object serialization . 60

6.4.1. Response value serialization . 61
6.4.2. Request parameter serialization . 63
6.4.3. Jolokia and MXBeans . 65

6.5. Tracking historical values . 66
6.6. Proxy requests . 66

Jolokia (1.7.0) ii

6.7. Agent Discovery . 67
6.8. Jolokia protocol versions . 69

7. Jolokia MBeans . 71
7.1. Configuration MBean . 71

7.1.1. Debugging . 71
7.1.2. History store . 71

7.2. Server Handler . 72
7.3. Discovery MBean . 72

8. Clients . 74
8.1. Javascript Client Library . 74

8.1.1. Installation . 74
8.1.2. Usage . 75
8.1.3. Simple API . 79
8.1.4. Request scheduler . 81
8.1.5. Jolokia as a Cubism Source . 83
8.1.6. Maven integration . 85

8.2. Java Client Library . 86
8.2.1. Tutorial . 87
8.2.2. J4pClient . 88
8.2.3. Request types . 92
8.2.4. Exceptions . 94

9. Jolokia JMX . 95
9.1. Jolokia MBeanServer . 95

9.1.1. MBeanServer merging . 95
9.2. @JsonMBean . 96
9.3. Spring Support . 97

9.3.1. JVM agent . 97
9.3.2. Jolokia MBeanServer . 99
9.3.3. Jolokia Spring plugin . 100

10. Tools . 101
10.1. Jmx4Perl . 101
10.2. Jolokia Roo Addon . 101

Jolokia - Reference Documentation

Jolokia (1.7.0) iii

Chapter 1. Introduction
JMX (Java Management Extensions) is the standard management solution in the Java world. Since
JDK 1.5 it is available in every Java Virtual Machine and especially Java EE application servers use
JMX for their management business.

I love JMX. It is a well crafted specification, created in times where other concepts like EJBs failed
spectacularly. Even more than ten years after its incubation it is still the one-and-only when it comes
to management in the Java world. Especially the various levels of sophistications for implementing
MBeans, starting with dead simple Standard MBeans and ending in very flexible Open MBeans and
MXBeans, are impressive.

However, some of the advanced JMX concepts didn't really appeal to the public and are now
effectively obsolete. Add-on standards like JSR-77 didn't received the adoption level they deserved.
And then there is JSR-160, JMX remoting. This specificatiion is designed for ease of usage and has
the ambition to transparently hide the technical details behind the remote communication so that is
makes (nearly) no difference, whether MBeans are invoked locally or remotely. Unfortunately, the
underlying transport protocol (RMI) and programing model is very Java centric and is not usable
outside the Java world.

This is where Jolokia steps in. It is an agent based approach, living side by side with JSR-160, but
uses the much more open HTTP for its transport business where the data payload is serialized in
JSON. This opens a whole new world for different, non-Java clients. Beside this protocol switch,
Jolokia provides new features for JMX remoting, which are not available in JSR-160 connectors: Bulk
requests allow for multiple JMX operations with a single remote server roundtrip. A fine grained
security mechanism can restrict the JMX access on specific JMX operations. Other features like the
JSR-160 proxy mode or history tracking are specific to Jolokia, too.

This reference manual explains the details of Jolokia. After an overview of Jolokia's architecture in
Chapter 2, Architecture, installation and configuration of the various Jolokia agents are described in
Chapter 3, Agents. Jolokia's security policy mechanism (Chapter 4, Security) and proxy mode
(Chapter 5, Proxy Mode) are covered in the following chapters. For implementors of Jolokia client
bindings the protocol definition is probably the most interesting part (Chapter 6, Jolokia Protocol).
Jolokia itself comes with the preregistered MBeans listed in Chapter 7, Jolokia MBeans. The
available client bindings are described in Chapter 8, Clients.

Jolokia (1.7.0) 1

http://jcp.org/en/jsr/detail?id=77
http://jcp.org/en/jsr/detail?id=160

Chapter 2. Architecture
The architecture of Jolokia is quite different to that of JSR-160 connectors. One of the most striking
difference is Jolokia's typeless approach.

JSR-160, released in 2003, has a different design goal than Jolokia. It is a specification with which a
client can transparently invoke MBean calls, regardless whether the MBean resides within a local or
remote MBeanServer. This provides a good deal of comfort for Java clients of this API, but it is also
dangerous because it hides the remoteness of JMX calls. There are several subtle issues,
performance being one of them. It does matter whether a call is invoked locally or remotely. A caller
should at least be aware what happens and what the consequences are. On the other side, there are
message passing models which include remoting explicitly, so that the caller knows from the
programming model that she is calling a potentially expensive remote call. This is probably the main
reason why RMI (the default protocol stack of JSR-160 connectors) lost market share to more explicit
remote protocols.

One problem with JSR-160 is it implicit reliance on RMI and its requirement for a complete (Java)
object serialization mechanism for passing management information over the wire. This closes the
door for all environments which are not Java (or more precisely, JVM) aware. Jolokia uses a typeless
approach, where some sort of lightweight serialization to JSON is used (in both directions, but a bit
asymmetrically in its capabilities). Of course this approach has some drawbacks, too, but also quite
some advantages. At least it is unique in the JMX world ;-).

2.1. Agent mode

Figure 2.1, “Jolokia architecture” illustrates the environment in which Jolokia operates. The agent
exports on the frontside a JSON based protocol over HTTP that gets bridged to invocation of local
JMX MBeans. It lives outside the JSR-160 space and hence requires a different setup. Various
techniques are available for exporting its protocol via HTTP. The most prominent being to put the
agent into a servlet container. This can be a lightweight one like Tomcat or Jetty or a full-blown Java
EE Server. Since it acts like a usual web application the deployment of the agent is well understood
and should pose no entry barrier for any developer who has ever dealt with Java web applications.

Figure 2.1. Jolokia architecture

But there are more options. Specialized agents are able to use an OSGi HttpService or come with an
embedded Jetty-Server in case of the Mule agent. The JVM agent uses the HTTP-Server included
with every Oracle JVM 6 and can be attached dynamically to any running Java process. Agents are
described in detail in Chapter 3, Agents.

Jolokia can be also integrated into one's own applications very easily. The jolokia-core library
(which comes bundled as a jar), includes a servlet which can be easily added to a custom
application. Section 3.1.3, “Programmatic usage of the Jolokia agent servlet” contains more
information about this.

2.2. Proxy Mode

Jolokia (1.7.0) 2

Proxy mode is a solution for when it is impossible to deploy the Jolokia agent on the target platform.
For this mode, the only prerequisite for accessing the target server is a JSR-160 connection. Most of
the time this happens for political reasons, where it is simply not allowed to deploy an extra piece of
software or where doing so requires a lengthy approval process. Another reason could be that the
target server already exports JMX via JSR-160 and you want to avoid the extra step of deploying the
agent.

A dedicated proxy servlet server is needed for hosting jolokia.war, which by default supports both
the agent mode and the proxy mode. A lightweight container like Tomcat or Jetty is a perfect choice
for this kind of setup.

Figure Figure 2.2, “Jolokia as JMX Proxy” describes a typical setup for the proxy mode. A client
sends a usual Jolokia request containing an extra section for specifying the target which should be
queried. All routing information is contained in the request itself so that the proxy can act universally
without the need of a specific configuration.

Figure 2.2. Jolokia as JMX Proxy

Having said all that, the proxy mode has some limitations which are listed in Chapter 5, Proxy Mode .

To summarize, the proxy mode should be used only when required. The agent servlet on its own is
more powerful than the proxy mode since it eliminates an additional layer adding to the overall
complexity and performance. Also, some features like merging of MBeanServers are not available in
the proxy mode.

Architecture

Jolokia (1.7.0) 3

1 Although the proxy mode is available for all four agents, you are normally free to setup the proxy environment. The
recommendation here is the war-agent for which very lightweight servlet container exists. Tomcat or Jetty are both a perfect
choice for a Jolokia proxy server.
2 Of course, there is much more to OSGi, a platform and programing model which I really like. This is my personal pet agent,
so to speak ;-).
3 What is the proper plural form of "bus"?
4 You could even instrument a Java EE application server this way, however this is not recommended.

Chapter 3. Agents
Jolokia is an agent based approach to JMX, which requires that clients install an extra piece of
software, the so-called agent. This software either needs to be deployed on the target server which
should be accessed via remote JMX (Section 2.1, “Agent mode”), or it can be installed on a
dedicated proxy server (Section 2.2, “Proxy Mode”). For both operational modes, there are four
different kind of agents1.

Webarchive (War) agent
This agent is packaged as a Java EE Webarchive (War). It is the standard installation artifact for
Java webapplications and probably one of the best known deployment formats. Jolokia ships with
a war-agent which can be deployed like any other web application. This agent has been tested on
many Java EE servers, from well-known market leaders to rarer species.

OSGi agent
OSGi is a middleware specification focusing on modularity and a well defined dynamic lifecycle 2.
The Jolokia OSGi agent bundles comes in two flavors: a minimal one with a dependency on a
running OSGi HttpService, and a all-in-one bundle including an embedded HttpService
implementation (which is exported, too). The former is the recommended, puristic solution, the
later is provided for a quick startup for initial testing the OSGi agent (but should be replaced with
the minimal bundle for production setups).

Mule agent
Mule is one of the leading Open Source Enterprise Service Busses3 (ESB). It provides a
management API into which a dedicated Jolokia agent plugs in nicely. This agent includes an
embedded Jetty for providing JMX HTTP access.

JVM agent
Starting with Java 6 the JDK provided by Oracle contains a lightweight HTTP-Server which is
used e.g. for the reference WebService stack implementation included in Java 6. Using the
Java-agent API (normally used by profilers and other development tools requiring the
instrumentation during the class loading phase), the JVM 6 Jolokia agent is the most generic one.
It is able to instrument any Java application running on a Oracle JDK 64. This Jolokia agent
variant is fully featured, however tends to be a bit slow since the provided HTTP-Server is not
optimized for performance. However it is useful for servers like Hadoop or Teracotta, which do
not provide convenient hooks for an HTTP-exporting agent on their own.

Jolokia (1.7.0) 4

http://www.osgi.org
http://www.osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html
http://www.mulesoft.org/
http://answers.yahoo.com/question/index?qid=20071216082739AAfkxnm

3.1. Java EE Agent (WAR)

3.1.1. Installation and Configuration

The WAR agent is the most popular variant, and can be deployed in a servlet container just like any
other Java EE web application.

Tomcat example
A simple example for deploying the agent on Tomcat can be found in the Jolokia quickstart.

Often, installation is simply a matter of copying the agent WAR to a deployment directory. On other
platforms an administrative Web GUI or a command line tool need to be used for deployment.
Providing detailed installation instructions for every servlet container is out of scope for this
document.

The servlet itself can be configured in two ways:

Servlet Init Parameters
Jolokia can be configured with init-param declarations within the servlet definition in
WEB-INF/web.xml. The known parameters are described in Table 3.1, “Servlet init parameters”.
The stock agent needs to be repackaged, though, in order to modify the internal web.xml.

Servlet Context Parameters
A more convenient possibility might be to use servlet context parameters, which can be
configured outside the WAR archive. This is done differently for each servlet container but
involves typically the editing of a configuration file. E.g. for Tomcat, the context for the Jolokia
agent can be adapted by putting a file jolokia.xml below $TC/conf/Catalina/localhost/ with a
content like:

<Context>
<Parameter name="maxDepth" value="1"/>

</Context>

The configuration options discoveryEnabled and discoveryAgentUrl can be provided via environment
variables or system properties, too. See the below for details.

Table 3.1. Servlet init parameters

Parameter Description Example

dispatcherClasses Classnames (comma
separated) of
RequestDispatcher used in
addition to the
LocalRequestDispatcher.
Dispatchers are a technique
used by the JSR-160 proxy to
dispatch (or 'route') a request to
a different destination. By

org.jolokia.jsr160.Jsr160RequestDispatcher

(this is the dispatcher for the
JSR-160 proxy)

Agents

Jolokia (1.7.0) 5

http://www.jolokia.org/tutorial.html
http://tomcat.apache.org/tomcat-7.0-doc/config/context.html

Parameter Description Example

default no extract dispatchers
are enabled (changed in 1.5.0)
You can use the system
property
org.jolokia.jsr160ProxyEnabled

or the environment variable
JOLOKIA_JSR160_PROXY_ENABLED

to enable the the JSR-160
proxy. In that case you should
be sure that you enable
authentication for the web
application to protect access to
the proxy.

jsr160ProxyAllowedTargets Path to a white list of patterns
which are matched against
possible JMX service URL for
incoming requests

/opt/jolokia/jsr160-proxy-allowed-patterns.txt

policyLocation Location of the policy file to
use. This is either a URL which
can read from (like a file: or
http: URL) or with the special
protocol classpath: which is
used for looking up the policy
file in the web application's
classpath. See Section 4.1.7,
“Policy Location” for details
about this parameter.

file:///home/jolokia/jolokia-access.xml

for a file based access to the
policy file. Default is
classpath:/jolokia-access.xml

restrictorClass Full classname of an
implementation of
org.jolokia.restrictor.Restrictor

which is used as a custom
restrictor for securing access
via Jolokia.

com.mycompany.jolokia.CustomRestrictor

(which must be included in the
war file and must implement
org.jolokia.restrictor.Restrictor)

allowDnsReverseLookup Access can be restricted based
on the remote host accessing
Jolokia. This host can be
specified as address or an
hostname. However, using the
hostname normally requires a
reverse DNS lookup which
might slow down operations. In
order to avoid this reverse DNS
lookup set this property to
false.

Default: true

debug Debugging state after startup.
Can be changed via the config
MBean during runtime.

Default: false

Agents

Jolokia (1.7.0) 6

Parameter Description Example

logHandlerClass Loghandler to use for providing
logging output. By default
logging is written to standard
out and error but you can
provide here a Java class
implementing
org.jolokia.util.LogHandler

for an alternative log output.
Two alternative
implementations are included in
this agent:

• org.jolokia.util.QuietLogHandler

which switches off logging
completely.

• org.jolokia.util.JulLogHandler

which uses a
java.util.logging Logger
with name org.jolokia

Example:
org.jolokia.util.LogHandler.Quiet

historyMaxEntries Entries to keep in the history.
Can be changed at runtime via
the config MBean.

Default: 10

debugMaxEntries Maximum number of entries to
keep in the local debug history
(if enabled). Can be changed
via the config MBean at
runtime.

Default: 100

maxDepth Maximum depth when
traversing bean properties. If
set to 0, depth checking is
disabled

Default: 15

maxCollectionSize Maximum size of collections
returned when serializing to
JSON. When set to 0,
collections are never truncated.

Default: 1000

maxObjects Maximum number of objects
which are traversed when
serializing a single response.
Use this as an airbag to avoid
boosting your memory and
network traffic. Nevertheless,
when set to 0 no limit is
imposed.

Default: 0

mbeanQualifier Qualifier to add to the
ObjectName of Jolokia's own

Agents

Jolokia (1.7.0) 7

Parameter Description Example

MBeans. This can become
necessary if more than one
agent is active within a servlet
container. This qualifier is
added to the ObjectName of this
agent with a comma. For
example a mbeanQualifier with
the value qualifier=own will
result in Jolokia server handler
MBean with the name
jolokia:type=ServerHandler,qualifier=own

mimeType MIME to use for the JSON
responses. Only
application/json and
text/plain are allowed. If any
other type is given, Jolokia falls
back to text/plain.

Default: text/plain

canonicalNaming This option specifies in which
order the key-value properties
within ObjectNames as
returned by list or search are
returned. By default this is the
so called 'canonical order' in
which the keys are sorted
alphabetically. If this option is
set to false, then the natural
order is used, i.e. the object
name as it was registered. This
option can be overridden with a
query parameter of the same
name.

Default: true

includeStackTrace Whether to include a stacktrace
of an exception in case of an
error. By default it it set to true

in which case the stacktrace is
always included. If set to false,
no stacktrace is included. If the
value is runtime a stacktrace is
only included for
RuntimeExceptions. This global
option can be overridden with a
query parameter.

Default: true

serializeException When this parameter is set to
true, then an exception thrown
will be serialized as JSON and
included in the response under
the key error_value. No
stacktrace information will be

Default: false

Agents

Jolokia (1.7.0) 8

Parameter Description Example

included, though. This global
option can be overridden by a
query parameter of the same
name.

allowErrorDetails If set to true then no error
details like a stack trace (when
includeStackTrace is set) or a
serialized exception (when
serializeExceptin is set) are
included. This can be user as a
startup option to avoid
exposure of error details
regardless of other options.

Default: true

detectorOptions Extra options passed to an
detector after successful
detection of an application
server. See below for an
explanation.

discoveryEnabled Is set to true then this servlet
will listen for multicast request
(multicast-group 239.192.48.84,
port 24884 by default, but can
be changed). By default this
option is disabled in order to
avoid conflicts with an Java EE
standards (though this should't
harm anyways). This option can
also be switched on with an
environment variable
JOLOKIA_DISCOVERY or the
system property
jolokia.discoveryEnabled set
to true.

Default: false

discoveryAgentUrl Sets the URL to respond for
multicast discovery requests. If
given, discoveryEnabled is set
implicetly to true. This URL can
also be provied by an
environment variable
JOLOKIA_DISCOVERY_AGENT_URL or
the system property
jolokia.discoveryUrl. Within
the value you can use the
placeholders ${host} and ${ip}

which gets replaced by the
autodetected local host
name/address. Also with
${env:ENV_VAR} and

http://10.9.11.87:8080/jolokia

Agents

Jolokia (1.7.0) 9

Parameter Description Example

${sys:property} environment
and system properties can be
referenced, respectively.

multicastGroup The multicast group IPv4
address. This group IP can be
also given as an environment
variable
JOLOKIA_MULTICAST_GROUP or a
system property
jolokia.multicastGroup

239.192.48.84

The multicast port. This port
can be also given as an
environment variable
JOLOKIA_MULTICAST_PORT or a
system property
jolokia.multicastPort

The multicast port. 24884

agentId A unique ID for this agent. By
default a unique id is
calculated. If provided it should
be ensured that this id is unique
among all agent reachable via
multicast requests used by the
discovery mechanism. It is
recommended not to set this
value. Within the agentId

specification you can use the
same placeholders as in
discoveryAgentUrl.

my-unique-agent-id

agentDescription An optional description which
can be used for clients to
present a human readable label
for this agent.

Monitoring agent

Jolokia has various detectors which can detect the brand and version of an application server it is
running in. This version is revealed with the version command. With the configuration parameter
detectorOptions extra options can be passed to the detectors. These options take the form of a
JSON object, where the keys are productnames and the values other JSON objects containing the
specific configuration. This configuration is feed to a successful detector which can do some extra
initialization on agent startup. Currently the following extra options are supported:

Table 3.2. Detector Options

Product Option Description

glassfish bootAmx If false and the agent is
running on Glassfish, this will
cause the AMX subsystem not

Agents

Jolokia (1.7.0) 10

Product Option Description

to be booted during startup. By
default, AMX which contains all
relevant MBeans for monitoring
Glassfish is booted.

3.1.2. Security Setup

The WAR agent comes in two flavors:

jolokia.war
The standard agent which is secured with the role "jolokia". You have to setup your servlet
container to connect this role to the authentication.

jolokia-unsecured.war
A demo agent, which is completely unsecured. Please use this agent only for evaluation
purposes, but it is highly recommended that use the security enabled agent jolokia.war

Java EE security is enabled by default by adding the required information within the web.xml.

Using jmx4perl's jolokia tool
jmx4perl comes with a nice command line utility called jolokia which allows for an easy setup of
security within a given jolokia.war. See Section 10.1, “Jmx4Perl” for more details.

All current client libraries are able to use BASIC HTTP authentication with user and password. The
<login-config> should be set accordingly. The <security-constraint> specifies the URL pattern
(which is in the default setup specify all resources provided by the Jolokia servlet) and a role name
"jolokia" which is used to find the proper authentication credentials. This role must be referenced
outside the agent WAR within the servlet container, e.g. for Tomcat the role definition can be found in
$TOMCAT/config/tomcat-users.xml.

3.1.3. Programmatic usage of the Jolokia agent servlet

The Jolokia agent servlet can be integrated into one's own web-applications as well. Simply add a
servlet with the servlet class org.jolokia.http.AgentServlet to your own web.xml. The following
example maps the agent to the context /jolokia:

<servlet>
<servlet-name>jolokia-agent</servlet-name>
<servlet-class>org.jolokia.http.AgentServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>jolokia-agent</servlet-name>
<url-pattern>/jolokia/*</url-pattern>

</servlet-mapping>

Agents

Jolokia (1.7.0) 11

http://www.jmx4perl.org
http://search.cpan.org/~roland/jmx4perl/scripts/jolokia

5 Replace org.jolokia.osgi.http.AgentServlet with org.jolokia.http.AgentServlet to use the servlet in a non-OSGi
environment.

Of course, any init parameter as described in Table 3.1, “Servlet init parameters” can be used here
as well.

In order for this servlet definition to find the referenced Java class, the JAR jolokia-core.jar must be
included. This jar can be found in Maven central . Maven users will can declare a dependency on this
jar artifact:

<project>
<!-- -->
<dependencies>
<dependency>
<groupId>org.jolokia</groupId>
<artifactId>jolokia-core</artifactId>
<version>${jolokia.version}</version>

</dependency>
</dependencies>
<!-- -->

</project>

The org.jolokia.http.Agent can be subclassed, too in order to provide a custom restrictor or a
custom log handler. See Section 4.2, “Jolokia Restrictors” for details.5

Also, multiple Jolokia agents can be deployed in the same JVM without problem. However, since the
agent deploys some Jolokia-specific MBeans on the single PlatformMBeansServer, for multi-agent
deployments it is important to use the mbeanQualifier init parameter to distinguish multiple Jolokia
MBeans by adding an extra propery to those MBeans' names. This also needs to be done if multiple
webapps containing Jolokia agents are deployed on the same Java EE server.

3.2. OSGi Agents

There are several free implementations available of OSGi HttpService. This bundle has been
tested with the Pax Web and Apache Felix HttpService, both of which come with an embedded
Jetty as servlet container by default.

Jolokia agents are also available as OSGi bundles. There are two flavors of this agent: A nearly bare
agent jolokia-osgi.jar declaring all its package dependencies as imports in its Manifest and an
all-in-one bundle jolokia-osgi-bundle.jar with minimal dependencies. The pure bundle fits best with
the OSGi philosophy and is hence the recommended bundle. The all-in-one monster is good for a
quick start since normally no additional bundles are required.

3.2.1. jolokia-osgi.jar

This bundle depends mostly on a running OSGi HttpService which it uses for registering the agent
servlet.

Agents

Jolokia (1.7.0) 12

http://repo1.maven.org/maven2/org/jolokia/jolokia-core
http://wiki.ops4j.org/display/paxweb/Pax+Web
http://felix.apache.org/site/apache-felix-http-service.html
http://www.osgi.org
http://www.osgi.org/javadoc/r4v42/org/osgi/service/http/HttpService.html

All package imports of this bundle are listed in Table 3.3, “Package Imports of jolokia-osgi.jar (SB:
exported by system bundle)”. Note that the org.osgi.framework.* and javax.* packages are typically
exported by the system bundle, so no extra installation effort is required here. Whether the
org.osgi.service.* interfaces are available depends on your OSGi container. If they are not
provided, they can be easily fetched and installed from e.g. maven central. Often the LogService
interface is exported out of the box, but not the HttpService. You will notice any missing package
dependency during the resolve phase while installing jolokia-osgi.jar.

Table 3.3. Package Imports of jolokia-osgi.jar (SB: exported by system bundle)

Package SB Package SB Package SB Package SB

org.osgi.frameworkX javax.servlet org.w3c.domX javax.managementX

org.osgi.service.http javax.servlet.http org.xml.sax X javax.management.openmbeanX

org.osgi.service.log? javax.namingX javax.xml.parsersX javax.management.remoteX

org.osgi.util.trackerX

This agent bundle consumes two services by default: As stated above, an
org.osgi.service.http.HttpService which is used to register (deregister) the Jolokia agent as a
servlet under the context /jolokia by default as soon as the HttpService becomes available
(unavailable). Secondly, an org.osgi.service.log.LogService is used for logging, if available. If such
a service is not registered, the Jolokia bundle uses the standard HttpServlet.log() method for its
logging needs.

The Jolokia OSGi bundle can be configured via the OSGi Configuration Admin service using the PID
org.jolokia.osgi (e.g. if using Apache Karaf, place properties in etc/org.jolokia.osgi.cfg), or
alternatively via global properties which typically can be configured in a configuration file of the OSGi
container. All properties start with the prefix org.jolokia and are listed in Table 3.4, “Jolokia Bundle
Properties”. They are mostly the same as the init-param options for a Jolokia servlet when used in a
Java EE WAR artifact.

Table 3.4. Jolokia Bundle Properties

Property Default Description

org.jolokia.user User used for authentication
with HTTP Basic
Authentication. If not given, no
authentication is used.

org.jolokia.password Password used for
authentication with HTTP Basic
Authentication.

org.jolokia.agentContext /jolokia Context path of the agent
servlet

org.jolokia.agentId A unique ID for this agent. By
default a unique id is
calculated. If provided it should

Agents

Jolokia (1.7.0) 13

http://repo1.maven.org/maven2/org/osgi/org.osgi.compendium/4.2.0/org.osgi.compendium-4.2.0.jar

Property Default Description

be ensured that this id is unique
among all agent reachable via
multicast requests used by the
discovery mechanism. It is
recommended not to set this
value. Within the agentId

specification you can use the
same placeholders as in
discoveryAgentUrl.

org.jolokia.agentDescription An optional description which
can be used for clients to
present a humand readable
label for this agent.

org.jolokia.dispatcherClasses Class names (comma
separated) of request
dispatchers used in addition to
the LocalRequestDispatcher.
E.g using a value of
org.jolokia.jsr160.Jsr160RequestDispatcher

allows the agent to play the role
of a JSR-160 proxy. By default
no extract dispatchers are
enabled. You can use the
system property
org.jolokia.jsr160ProxyEnabled

or the environment variable
JOLOKIA_JSR160_PROXY_ENABLED

to enable the the JSR-160
proxy. In that case you should
be sure that you enable
authentication for the web
application to protect access to
the proxy.

org.jolokia.debug false Debugging state after startup.
This can be changed via the
Config MBean
(jolokia:type=Config) at
runtime

org.jolokia.debugMaxEntries 100 Maximum number of entries to
keep in the local debug history
if switched on. This can be
changed via the config MBean
at runtime.

org.jolokia.maxDepth 0 Maximum depth when
traversing bean properties. If
set to 0, depth checking is
disabled

Agents

Jolokia (1.7.0) 14

Property Default Description

org.jolokia.maxCollectionSize 0 Maximum size of collections
returned when serializing to
JSON. When set to 0,
collections are not truncated.

org.jolokia.maxObjects 0 Maximum number of objects
which are traversed when
serializing a single response.
Use this as an airbag to avoid
boosting your memory and
network traffic. Nevertheless,
when set to 0 no limit is
imposed.

org.jolokia.historyMaxEntries 10 Number of entries to keep in
the history. This can be
changed at runtime via the
Jolokia config MBean.

org.jolokia.listenForHttpService true If true the bundle listens for an
OSGi HttpService and if
available registers an agent
servlet to it.

org.jolokia.httpServiceFilter Can be any valid OSGi filter for
locating a which
org.osgi.service.http.HttpService

is used to expose the Jolokia
servlet. The syntax is that used
by the
org.osgi.framework.Filter

which is in turn a RFC 1960
based filter. The use of this
property is described in
Section 3.2.2, “Running on
Glassfish v3 upwards”

org.jolokia.useRestrictorService false If true the Jolokia agent will use
any
org.jolokia.restrictor.Restrictor

service for applying access
restrictions. If this option is
false the standard method of
looking up a security policy file
is used, as described in
Section 4.1, “Policy based
security”.

org.jolokia.canonicalNaming true This option specifies in which
order the key-value properties
within ObjectNames as
returned by list or search are
returned. By default this is the

Agents

Jolokia (1.7.0) 15

http://www.ietf.org/rfc/rfc1960.txt
http://www.ietf.org/rfc/rfc1960.txt

Property Default Description

so called 'canonical order' in
which the keys are sorted
alphabetically. If this option is
set to false, then the natural
order is used, i.e. the object
name as it was registered. This
option can be overridden with a
query parameter of the same
name.

org.jolokia.includeStackTrace true Whether to include a stacktrace
of an exception in case of an
error. By default it it set to true

in which case the stacktrace is
always included. If set to false,
no stacktrace is included. If the
value is runtime a stacktrace is
only included for
RuntimeExceptions. This global
option can be overridden with a
query parameter.

org.jolokia.serializeException false When this parameter is set to
true, then an exception thrown
will be serialized as JSON and
included in the response under
the key error_value. No
stactrace infornmation will be
included, though. This global
option can be overridden by a
query parameter of the same
name.

org.jolokia.detectorOptions An optional JSON
representation for application
specific options used by
detectors for post-initialization
steps. See the description of
detectorOptions in Table 3.1,
“Servlet init parameters” for
details.

org.jolokia.discoveryEnabled false Is set to true then this servlet
will listen for multicast request
(multicast-group 239.192.48.84,
port 24884 by default, but can
be configued). By default this
option is disabled in order to
avoid conflicts with an Java EE
standards (though this should't
harm anyways). This option can
also be switched on with an

Agents

Jolokia (1.7.0) 16

Property Default Description

environment variable
JOLOKIA_DISCOVERY or the
system property
jolokia.discoveryEnabled set
to true.

org.jolokia.discoveryAgentUrl Sets the URL to respond for
multicast discovery requests. If
given, discoveryEnabled is set
implicetly to true. This URL can
also be provided by an
environment variable
JOLOKIA_DISCOVERY_AGENT_URL or
the system property
jolokia.discoveryUrl. Within
the value you can use the
placeholders ${host} and ${ip}

which gets replaced by the
autodetected local host
name/address. Also with
${env:ENV_VAR} and
${sys:property} environment
and system properties can be
referenced, respectively.

org.jolokia.multicastGroup 239.192.48.84 The multicast group IPv4
address. This group IP can be
also given as an environment
variable
JOLOKIA_MULTICAST_GROUP or a
system property
jolokia.multicastGroup

org.jolokia.multicastPort 24884 The multicast port. This port
can be also given as an
environment variable
JOLOKIA_MULTICAST_PORT or a
system property
jolokia.multicastPort

org.jolokia.realm jolokia Sets the security realm to use.
If the authMode is set to jaas this
is also used as value for the
security domain. E.g. for Karaf
3 and later, this realm should
be karaf since all JMX MBeans
are guarded by this security
domain.

org.jolokia.authMode basic Can be either basic (the
default), jaas, service-all or
service-any. If jaas is used, the

Agents

Jolokia (1.7.0) 17

Property Default Description

user and password which are
given in the Authorization:

header are used for login in via
JAAS and, if successful, the
return subject is used for all
Jolokia operation. When no
user is set and the authMode is
either service-all or
service-any then a
org.jolokia.osgi.security.Authenticator

service is looked up in the
OSGi service registry. If more
then one of such service is
registered, service-all requires
that all authenticators succeed,
for service-any it is sufficient
that one authenticator
successfully authenticates. In
any case if no such
Authenticator service can be
found, the request is rejected.

This bundle also exports the service org.jolokia.osgi.servlet.JolokiaContext which can be used to
obtain context information of the registered agent like the context path under which this servlet can
be reached. Additionally, it exports org.osgi.service.http.HttpContext, which is used for
authentication. Note that this service is only available when the agent servlet is active (i.e. when an
HttpService is registered).

3.2.2. Running on Glassfish v3 upwards

You have a couple of choices when running jolokia on Glassfish v3 and up, since Glassfish is a both
a fully fledged Java EE container and an OSGi container. If you choose to run the Section 3.1, “Java
EE Agent (WAR)” then it is completely straight forward just deploy the war in the normal way. If you
choose to deploy the Section 3.2, “OSGi Agents” then you will need to configure the
org.jolokia.httpServiceFilter option with a filter to select either the Admin HttpService (4848 by
default) or the Default HttpService which is where WAR files are deployed to.

In Glassfish 3.1.2 the OSGi bundle configuration is done in glassfish/conf/osgi.properties in
version's prior to this the configuration is by default in glassfish/osgi/felix/conf/config.properties

or if you are using Equinox glassfish/osgi/equinox/configuration/config.ini

Restrict the jolokia http service selection to the admin host
org.jolokia.httpServiceFilter=(VirtualServer=__asadmin)
Or alternatively to the normal http service use : (VirtualServer=server)

Deploying the bundle can be either be done by coping the jolokia-osgi.jar into the domain

Agents

Jolokia (1.7.0) 18

glassfish/domains/<domain>/autodeploy/bundles directory or it can be added to all instances by
copying the jar to glassfish/modules/autostart

By default the agent will be available on http://localhost:<port>/osgi/jolokia rather than
http://localhost:<port>/jolokia as with WAR deployment.

3.2.3. jolokia-osgi-bundle.jar

The all-in-one bundle includes an implementation of org.osgi.service.http.HttpService, i.e. the
Felix implementation. The HttpService will be registered as OSGi service during startup, so it is
available for other bundles as well. The only package import requirement for this bundle is
org.osgi.service.LogService, since the Felix Webservice requires this during startup. As mentioned
above, normally the LogService interface gets exported by default in the standard containers, but if
not, you need to install it e.g. from the OSGi compendium definitions.

This bundle can be configured the same way as the pure bundle as described in Section 3.2.1,
“jolokia-osgi.jar”. Additionally, the embedded Felix HttpService can be configured as described in its
documentation. e.g. setting the port to 9090 instead of the default port 8080, a property
org.osgi.service.http.port=9090 needs to be set. This might be useful, if this bundle is used within
containers which already occupy the default port (Glassfish, Eclipse Virgo) but don't expose an OSGi
HttpService.

3.2.4. Programmatic servlet registration

It is also possible to register the Jolokia agent servlet manually instead of relying of the OSGi bundle
activator which comes with the agents. For this use case jolokia-osgi.jar should be used. This
bundle exports the package org.jolokia.osgi.servlet which includes the servlet class
JolokiaServlet. This class has three constructors: A default constructor without arguments, one with
a single BundleContext argument and finally one with an additional Restrictor (see Section 4.2,
“Jolokia Restrictors” for details how access restrictions can be applied). The constructor with a
BundleContext as its argument has the advantage that it will use an OSGi LogService if available and
adds various OSGi server detectors which adds server information like product name and version to
the version command. Refer to Section 6.2.6, “Getting the agent version (version)” for details about
the server infos provided.

Please note that for this use case the bundle org.jolokia.osgi should not be started but left in the
state resolved. Otherwise, as soon as an OSGi HttpService registers, this bundle will try to add yet
another agent servlet to this service, which is probably not what you want. Alternatively, the bundle
property org.jolokia.listenForHttpService can be set to false in which case there will be never an
automatic servlet registration to an HttpService.

3.2.5. Restrictor service

As described in Section 4.2, “Jolokia Restrictors”, the Jolokia agent can use custom restrictors
implementing the interface org.jolokia.restrictor.Restrictor. If the bundle property
org.jolokia.useRestrictorService is set to true and no restrictor is configured by other means, the
agent will use one or more OSGi service which register under the name
org.jolokia.restrictor.Restrictor. If no such service is available, access to the agent is always
denied. If one such restrictor service is available, the access decision is delegated to this service.
When more than one restrictor service is available, access is ony granted if all of them individually
grant access. A sample restrictor service as a maven project can be found in the Jolokia source at

Agents

Jolokia (1.7.0) 19

http://felix.apache.org/site/apache-felix-http-service.html
http://repo1.maven.org/maven2/org/osgi/org.osgi.compendium/4.2.0/org.osgi.compendium-4.2.0.jar
http://felix.apache.org/site/apache-felix-http-service.html#ApacheFelixHTTPService-ConfigurationProperties

agent/osgi/restrictor-sample.

3.3. Mule Agent

Jolokia's Mule agent uses Mule's own agent interface for plugging into the ESB running in standalone
mode.

The agent needs to be included into the Mule configuration as shown in the following example, which
is the way how to configure the agent for Mule 3:

<mule xmlns="http://www.mulesoft.org/schema/mule/core"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:management="http://www.mulesoft.org/schema/mule/management"
xmlns:spring="http://www.springframework.org/schema/beans"
xsi:schemaLocation="

http://www.mulesoft.org/schema/mule/core
http://www.mulesoft.org/schema/mule/core/3.1/mule.xsd

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd

http://www.mulesoft.org/schema/mule/management
http://www.mulesoft.org/schema/mule/management/3.1/mule-management.xsd">

<!-- -->
<custom-agent name="jolokia-agent" class="org.jolokia.mule.JolokiaMuleAgent">

<spring:property name="port" value="8899"/>
</custom-agent>
<management:jmx-server/>

</mule>

For Mule 2, the configuration is slightly different since the <custom-agent> is contained in the
management namespace for Mule 2 (<management:custom-agent>)

This agent knows about the following configuration parameters

Table 3.5. Mule agent configuration options

Parameter Description Example

host Hostaddress to which the HTTP
server should bind to.

InetAddress.getLocalHost()

port Port the HTTP server should
listen to.

8888

user Use to authenticate against.
This switches on security and
requires a client to provide a
user and password.

password Password to check against
when security is switched on.

debug Debugging state after startup. false

Agents

Jolokia (1.7.0) 20

http://www.mulesoft.org

Parameter Description Example

Can be changed via the
Section 7.1, “Configuration
MBean” during runtime.

historyMaxEntries Entries to keep in the history.
Can be changed at runtime via
the Section 7.1, “Configuration
MBean”.

10

debugMaxEntries Maximum number of entries to
keep in the local debug history
(if enabled). Can be changed
via the Section 7.1,
“Configuration MBean” at
runtime.

100

maxDepth Maximum depth when
traversing bean properties. If
set to 0, depth checking is
disabled

5

maxCollectionSize Maximum size of collections
returned when serializing to
JSON. When set to 0,
collections are never truncated.

0

maxObjects Maximum number of objects
which are traversed when
serializing a single response.
Use this as an airbag to avoid
boosting your memory and
network traffic. Nevertheless,
when set to 0 no limit is
imposed.

10000

canonicalNaming This option specifies in which
order the key-value properties
within ObjectNames as
returned by list or search are
returned. By default this is the
so called 'canonical order' in
which the keys are sorted
alphabetically. If this option is
set to false, then the natural
order is used, i.e. the object
name as it was registered. This
option can be overridden with a
query parameter of the same
name.

true

includeStackTrace Whether to include a stacktrace
of an exception in case of an
error. By default it it set to true

true

Agents

Jolokia (1.7.0) 21

Parameter Description Example

in which case the stacktrace is
always included. If set to false,
no stacktrace is included. If the
value is runtime a stacktrace is
only included for
RuntimeExceptions. This global
option can be overridden with a
query parameter.

serializeException When this parameter is set to
true, then an exception thrown
will be serialized as JSON and
included in the response under
the key error_value. No
stactrace infornmation will be
included, though. This global
option can be overridden by a
query parameter of the same
name.

false

The context under which the agent is reachable is fixed to /jolokia. As an alternative to this Mule
agent, the Section 3.4, “JVM Agent” can be used for Mule, too. This agent also knows about SSL
encryption and authentication.

3.4. JVM Agent

The JVM agent is right agent when it comes to instrument an arbitrary Java application which is not
covered by the other agents. This agent can be started by any Java program by providing certain
startup options to the JVM. Or it can be dynamically attached (and detached) to an already running
Java process. This universal agent uses the JVM agent API and is available for every Sun/Oracle
JVM 1.6 and later.

3.4.1. Jolokia as JVM Agent

The JVM agent uses the JVM Agent interface for linking into any JVM. Under the hood it uses an
HTTP-Server, which is available on every Oracle/Sun JVM from version 1.6 upwards.

The JDK embedded HTTP-Server is not the fastest one (it is used e.g. for the JAXWS reference
implementation), but for our monitoring needs the performance is sufficient. There are several
configuration options for tuning the HTTP server's performance. See below for details.

3.4.1.1. Installation

This agent gets installed by providing a single startup option -javaagent when starting the Java
process.

Agents

Jolokia (1.7.0) 22

http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/index.html

java -javaagent:agent.jar=port=7777,host=localhost

agent.jar is the filename of the Jolokia JVM agent. The agent can be downloaded like the others
from the download page. When downloading from a Maven repository you need to check for the
classifier agent (i.e. the jar to download looks like jolokia-jvm-1.3.1-agent.jar, not
jolokia-jvm-1.1.5.jar). Options can be appended as a comma separated list. The available options
are the same as described in Table 3.1, “Servlet init parameters” plus the one described in table
Table 3.6, “JVM agent configuration options”. If an options contains a comma, an equal sign or a
backslash, it must be escaped with a backslash.

Table 3.6. JVM agent configuration options

Parameter Description Example

agentContext Context under which the agent
is deployed. The full URL will
be
protocol://host:port/agentContext.
The default context is /jolokia.

/j4p

agentId A unique ID for this agent. By
default a unique id is
calculated. If provided it should
be ensured that this id is unique
among all agent reachable via
multicast requests used by the
discovery mechanism. It is
recommended not to set this
value. Within the agentId

specification you can use the
same placeholders as in
discoveryAgentUrl.

my-unique-agent-id

agentDescription An optional description which
can be used for clients to
present a human readable label
for this agent.

Intranet Timebooking Server

host Hostaddress to which the HTTP
server should bind to. If "*" or
"0.0.0.0" is given, the servers
binds to every network
interface.

localhost

port Port the HTTP server should
listen to. If set to 0, then an
arbitrary free port will be
selected.

8778

user User to be used for
authentication (along with a
password)

Agents

Jolokia (1.7.0) 23

https://jolokia.org/download.html

Parameter Description Example

password Password used for
authentication (user is then
required, too)

realm Sets the security realm to use.
If the authMode is set to jaas this
is also used as value for the
security domain. E.g. for Karaf
3 and later, this realm should
be karaf since all JMX MBeans
are guarded by this security
domain.

jolokia

authMode Can be either basic (the
default), jaas or delegate. If
jaas is used, the user and
password given in the
Authorization: header are
used for login in via JAAS and,
if successful, the return subject
is used for all Jolokia operation.
This has only an effect, if user
is set. For authentication mode
delegate, the authentication
decision is delegated to a
service specified by authUrl

(see below for details).

basic

authMatch If MultiAuthenticator is used,
this config item explains how to
combine multiple
authenticators. Supported
values: any at least one
authenticator must match, all

all authenticators must match.

any

authClass Fully qualified name of an
authenticator class. Class must
be on classpath and must
extend
com.sun.net.httpserver.Authenticator.
Class can declare a constructor
that takes one argument of a
type
org.jolokia.config.Configuration

in which case Jolokia runtime
configuration will be passed
(useful in cases where
authenticator requires
additional configuration). If no
such constructor is found,
default (no-arg) constructor will

Agents

Jolokia (1.7.0) 24

Parameter Description Example

be use to create an instance.

authUrl URL of a service used for
checking the authentication.
This configuration option is only
effective if authMode is set to
delegate. This URL can have a
HTTP or HTTPS scheme. The
initially provided Authorization:

header is copied over to the
request against this URL.

authPrincipalSpec Expression used for extracting
a principal name from the
response of a delegate
authentication service. This
parameter is only in use when
the authMode is set to delegate.
The following expressions are
supported:

json:path

a path into a JSON
response which points to
the principal. E.g. a principal
spec jason:metadata/name

will select the "name"
property within the JSON
object specified by the
"metadata" property. For
navigate into arrays,
numeric indexes can be
used.

empty:

Always extracts an empty
("") principal.

If this option is not specified,
not principal is extracted.

authIgnoreCerts If given, the authMode is set to
delegate and the delegate URL
is as HTTPS-URL then the
server certificate as well as the
server's DNS name will not be
verified. This useful in order to
avoid (or introduce) complex
keymanagement issues, but is
of course less secure. By
default certs a verified with the
local keystore.

Agents

Jolokia (1.7.0) 25

Parameter Description Example

protocol HTTP protocol to use. Should
be either http or https. For the
SSL stack there are various
additional configuration options.

http

backlog Size of request backlog before
requests get discarded.

10

executor Threading model of the HTTP
server:

fixed

Thread pool with a fixed
number of threads (see also
threadNr)

cached

Cached thread pool which
creates threads on demand

single

A single thread only

single

threadNamePrefix Thread name prefix that
executor will use while creating
new thread(s).

jolokia-

threadNr Number of threads to be used
when the fixed execution
model is chosen.

5

keystore Path to the SSL keystore to use
(https only)

keystorePassword Keystore password (https only).
If the password is given
embedded in brackets [[...]],
then it is treated as an
encrypted password which was
encrypted with java -jar

jvm-agent.jar encrypt. See
below for details.

useSslClientAuthentication Whether client certificates
should be used for
authentication. The presented
certificate is validated that it is
signed by a known CA which
must be in the keystore (https
only). (true or false).

false

secureSocketProtocol Secure protocol that will be
used for establishing HTTPS

TLS

Agents

Jolokia (1.7.0) 26

Parameter Description Example

connection (https only)

keyStoreType SSL keystore type to use (https
only)

JKS

keyManagerAlgorithm Key manager algorithm (https
only)

SunX509

trustManagerAlgorithm Trust manager algorithm (https
only)

SunX509

caCert If HTTPs is to be used and no
keystore is given, then caCert

can be used to point to a PEM
encoded CA certification file.
This is use to verify client
certificates when
useSslClientAuthentication is
switched on (https only)

serverCert For SSL (and when no keyStore

is used) then this path must
point to server certificate which
is presented to clients (https
only)

serverKey Path to the PEM encoded key
file for signing the server cert
during TLS handshake. This is
only used when no keyStore is
used. For decrypting the key
the password given with
keystorePassword is used (https
only).

serverKeyAlgorithm Encryption algorithm to use for
decrypting the key given with
serverKey (https only)

RSA

clientPrincipal The principal which must be
given in a client certificate to
allow access to the agent. This
can be one or or more relative
distinguished names (RDN),
separated by commas. The
subject of a given client
certificate must match on all
configured RDNs. For example,
when the configuration is
"O=jolokia.org,OU=Dev" then a
client certificate's subject must
contain "O=jolokia.org" and
"OU=Dev" to allow the request.

Agents

Jolokia (1.7.0) 27

Parameter Description Example

Multiple alternative principals
can be configured by using
additional options with
consecutive index suffix like in
clientPrincipal.1,
clientPrincipal.2, ... Please
remember that a , separating
RDNs must be escaped with a
backslash (\,) when used on
the commandline as agent
arguments. (https and
useSslAuthentication only)

extraClientCheck If switched on the agent
performs an extra check for
client authentication that the
presented client cert contains a
client flag in the extended key
usage section which must be
present. (https and
useSslAuthentication only)

bootAmx If set to true and if the agent is
attached to a Glassfish server,
then during startup the AMX
subsystem is booted so that
Glassfish specific MBeans are
available. Otherwise, if set to
false the AMX system is not
booted.

true

config Path to a properties file from
where the configuration options
should be read. Such a
property file can contain the
configuration options as
described here as key value
pairs (except for the config

property of course :)

discoveryEnabled Is set to false then this agent
will not listen for multicast
request (multicast-group
239.192.48.84, port 24884 by
default, but can configured
individually). By default this
option is enabled. This option
can also be switched on with an
environment variable
JOLOKIA_DISCOVERY or the
system property
jolokia.discoveryEnabled set

Default: true

Agents

Jolokia (1.7.0) 28

Parameter Description Example

to true.

discoveryAgentUrl Sets the URL to respond for
multicast discovery requests. If
given, discoveryEnabled is set
implicitly to true. This URL can
also be provided by an
environment variable
JOLOKIA_DISCOVERY_AGENT_URL or
the system property
jolokia.discoveryUrl. Within
the value you can use the
placeholders ${host} and ${ip}

which gets replaced by the
autodetected local host
name/address. Also with
${env:ENV_VAR} and
${sys:property} environment
and system properties can be
referenced, respectively.

http://10.9.11.87:8778/jolokia

multicastGroup The multicast group IPv4
address. This group IP can be
also given as an environment
variable
JOLOKIA_MULTICAST_GROUP or a
system property
jolokia.multicastGroup

239.192.48.84

multicastPort The multicast port. This port
can be also given as an
environment variable
JOLOKIA_MULTICAST_PORT or a
system property
jolokia.multicastPort

24884

sslProtocol The list of SSL / TLS protocols
enabled. Valid options are
available in the documentation
on SunJSSEProvider for your
JDK version. Using only
TLSv1.1 and TLSv1.2 is
recommended in Java 1.7 and
Java 1.8. Using only TLSv1 is
recommended in Java 1.6.
Multiple protocols can be
configured by using additional
options with consecutive index
suffixes like in sslProtocol.1,
sslProtocol.2, ...

TLSv1.2

sslCipherSuite The list of SSL / TLS cipher

Agents

Jolokia (1.7.0) 29

Parameter Description Example

suites to enable. The table of
available cipher suites is
available under the "Default
Enabled Cipher Suites" at the
SunJSSEProvider
documentation here. Multiple
cipher suites can be configured
by using additional options with
consecutive index suffixes like
in sslCipherSuite.1,
sslCipherSuite.2, ...

policyLocation Path to the XML policy file

Upon successful startup the agent will print out a success message with the full URL which can be
used by clients for contacting the agent.

3.4.2. Attaching a Jolokia agent on the fly

A Jolokia agent can be attached to any running Java process as long as the user has sufficient
access privileges for accessing the process. This agent uses the Java attach API for dynamically
attaching and detaching to and from the process. It works similar to JConsole connecting to a local
process. The Jolokia advantage is, that after the start of the agent, it can be reached over the
network.

The JAR containing the JVM agent also contains a client application which can be reached via the
-jar option. Call it with --help to get a short usage information:

$ java -jar jolokia-jvm-1.3.4-agent.jar --help

Jolokia Agent Launcher
======================

Usage: java -jar jolokia-jvm-1.3.4-agent.jar [options] <command> <pid/regexp>

where <command> is one of
start -- Start a Jolokia agent for the process specified
stop -- Stop a Jolokia agent for the process specified
status -- Show status of an (potentially) attached agent
toggle -- Toggle between start/stop (default when no command is given)
list -- List all attachable Java processes (default when no argument is given at all)
encrypt -- Encrypt a password which is given as argument or read from standard input

[options] are used for providing runtime information for attaching the agent:

--host <host> Hostname or IP address to which to bind on
(default: InetAddress.getLocalHost())

--port <port> Port to listen on (default: 8778)
--agentContext <context> HTTP Context under which the agent is reachable (default: /jolokia)
--agentId <agent-id> VM unique identifier used by this agent (default: autogenerated)
--agentDescription <desc> Agent description
--authMode <mode> Authentication mode: 'basic' (default), 'jaas' or 'delegate'
--authClass <class> Classname of an custom Authenticator which must be loadable from

the classpath

Agents

Jolokia (1.7.0) 30

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider
http://download.oracle.com/javase/6/docs/jdk/api/attach/spec/com/sun/tools/attach/VirtualMachine.html

--authUrl <url> URL used for a dispatcher authentication (authMode == delegate)
--authPrincipalSpec <spec> Extractor specification for getting the principal

(authMode == delegate)
--authIgnoreCerts Whether to ignore CERTS when doing a dispatching authentication

(authMode == delegate)
--user <user> User used for Basic-Authentication
--password <password> Password used for Basic-Authentication
--quiet No output. "status" will exit with code 0 if the agent is running,

1 otherwise
--verbose Verbose output
--executor <executor> Executor policy for HTTP Threads to use (default: single)

"fixed" -- Thread pool with a fixed number of threads (default: 5)
"cached" -- Cached Thread Pool, creates threads on demand
"single" -- Single Thread

--threadNr <nr threads> Number of fixed threads if "fixed" is used as executor
--backlog <backlog> How many request to keep in the backlog (default: 10)
--protocol <http|https> Protocol which must be either "http" or "https" (default: http)
--keystore <keystore> Path to keystore (https only)
--keystorePassword <pwd> Password to the keystore (https only)
--useSslClientAuthentication Use client certificate authentication (https only)
--secureSocketProtocol <name> Secure protocol (https only, default: TLS)
--keyStoreType <name> Keystore type (https only, default: JKS)
--keyManagerAlgorithm <name> Key manager algorithm (https only, default: SunX509)
--trustManagerAlgorithm <name> Trust manager algorithm (https only, default: SunX509)
--caCert <path> Path to a PEM encoded CA cert file (https & sslClientAuth only)
--serverCert <path> Path to a PEM encoded server cert file (https only)
--serverKey <path> Path to a PEM encoded server key file (https only)
--serverKeyAlgorithm <algo> Algorithm to use for decrypting the server key (https only, default: RSA)
--clientPrincipal <principal> Allow only this principal in the client cert (https & sslClientAuth only)

If supplied multiple times, any one of the clientPrincipals must match
--extendedClientCheck <t|f> Additional validation of client certs for the proper key usage

(https & sslClientAuth only)
--discoveryEnabled <t|f> Enable/Disable discovery multicast responses (default: true)
--discoveryAgentUrl <url> The URL to use for answering discovery requests. Will be autodetected

if not given.
--sslProtocol <protocol> SSL / TLS protocol to enable, can be provided multiple times
--sslCipherSuite <suite> SSL / TLS cipher suite to enable, can be provided multiple times
--debug Switch on agent debugging
--debugMaxEntries <nr> Number of debug entries to keep in memory which can be fetched from the

Jolokia MBean
--maxDepth <depth> Maximum number of levels for serialization of beans
--maxCollectionSize <size> Maximum number of element in collections to keep when serializing the

response
--maxObjects <nr> Maximum number of objects to consider for serialization
--restrictorClass <class> Classname of an custom restrictor which must be loadable from the classpath
--policyLocation <url> Location of a Jolokia policy file
--mbeanQualifier <qualifier> Qualifier to use when registering Jolokia internal MBeans
--canonicalNaming <t|f> whether to use canonicalName for ObjectNames in 'list' or 'search'

(default: true)
--includeStackTrace <t|f> whether to include StackTraces for error messages (default: true)
--serializeException <t|f> whether to add a serialized version of the exception in the Jolokia

response (default: false)
--config <configfile> Path to a property file from where to read the configuration
--help This help documentation
--version Version of this agent (it's 1.3.4 btw :)

<pid/regexp> can be either a numeric process id or a regular expression. A regular expression is matched
against the processes' names (ignoring case) and must be specific enough to select exactly one process.

If no <command> is given but only a <pid> the state of the Agent will be toggled
between "start" and "stop"

If neither <command> nor <pid> is given, a list of Java processes along with their IDs

Agents

Jolokia (1.7.0) 31

is printed

There are several possible reasons, why attaching to a process can fail:
* The UID of this launcher must be the very *same* as the process to attach too. It not sufficient
to be root.

* The JVM must have HotSpot enabled and be a JVM 1.6 or larger.
* It must be a Java process ;-)

For more documentation please visit www.jolokia.org

Every option described in Table 3.6, “JVM agent configuration options” is reflected by a command
line option for the launcher. Additionally, the option --quiet can be used to keep the launcher silent
and --verbose for adding some extra logging.

The launcher knows various operational modes, which needs to be provided as a non-option
argument and possibly require an extra argument.

start

Use this to attach an agent to an already running, local Java process. The additional argument is
either the process id of the Java process to attach to or a regular expression which is matched
against the Java processes names. In the later case, exactly one process must match, otherwise
an exception is raised. The command will return with an return code of 0 if an agent has been
started. If the agent is already running, nothing happens and the launcher returns with 1. The
URL of the Agent will be printed to standard out on an extra line except when the --quiet option
is used.

stop

Command for stopping an running and dynamically attached agent. The required argument is the
Java process id or an regular expression as described for the start command. If the agent could
be stopped, the launcher exits with 0, it exits with 1 if there was no agent running.

toggle

Starts or stops an dynamically attached agent, depending on its current state. The Java process
ID is required as an additional argument. If an agent is running, toggle will stop it (and vice
versa). The launcher returns with an exit code of 0 except when the operation fails. When the
agent is started, the full agent's URL is printed to standard out. toggle is the default command
when only a numeric process id is given as argument or a regular expression which not the same
as a known command.

status

Command for showing the current agent status for a given process. The process id or a regular
expression is required. The launcher will return with 0 when the agent is running, otherwise with
1.

list

List all local Java processes in a table with the process id and the description as columns. This is
the default command if no non-option argument is given at all. list returns with 0 upon normal
operation and with 1 otherwise.

encrypt

Encrypt the keystore password. You can add the password to encrypt as an additional argument
or, if not given, it is read from standard input. The output of this command is the encrypted

Agents

Jolokia (1.7.0) 32

6And in fact, some support for launching this dynamic agent is planned for a forthcoming release of jmx4perl.

password in the format [[....]], which should be used literally (excluding the final newline) for
the keystore password when using the option keystorePassword in the agent configuration.

The launcher is especially suited for one-shot, local queries. For example, a simple shell script for
printing out the memory usage of a local Java process, including (temporarily) attaching an Jolokia
agent looks simply like in the following example. With a complete client library like Jmx4Perl even
more one shot scripts are possible6.

#!/bin/sh

url=`java -jar agent.jar start $1 | tail -1`

memory_url="${url}read/java.lang:type=Memory/HeapMemoryUsage"
used=`wget -q -O - "${memory_url}/used" | sed 's/^.*"value":\([0-9]*\).*$/\1/'`
max=`wget -q -O - "${memory_url}/max" | sed 's/^.*"value":\([0-9]*\).*$/\1/'`
usage=$((${used}*100/${max}))
echo "Memory Usage: $usage %"

java -jar agent.jar --quiet stop $1

Agents

Jolokia (1.7.0) 33

http://www.jmxp4perl.org

Chapter 4. Security
Security in JSR-160 remoting is an all-or-nothing option. Either all or none of your MBeans are
accessible (except when your application server uses a SecurityManager, but that is not often the
case). Jolokia, on the other hand, allows for fine grained security defined in an XML security policy
file. It allows for access restrictions on MBean names (or patterns), attributes, operations, source IP
address (or a subnet) and type of Jolokia operation.

4.1. Policy based security

Access to MBean and to the Jolokia agents in general can be restricted with an XML policy file. This
policy can be configured for various parameters and is divided into several sections.

4.1.1. IP based restrictions

Overall access can be granted based on the IP address of an HTTP client. These restrictions are
specified within a <remote> section, which contains one or more <host> elements. The source can be
given either as an IP address, a host name, or a netmask given in CIDR format (e.g. "10.0.0.0/16" for
all clients coming from the 10.0 network). The following allows access from localhost and all clients
whose IP addresses start with "10.0". For all other IP addresses access is denied.

<remote>
<host>localhost</host>
<host>10.0.0.0/16</host>

</remote>

4.1.2. Commands

This section specifies the Jolokia commands for which access is generally granted. For each
command in the list, access can be further restricted within the <deny> part and each command
missing in the list, which is forbidden globally, can be selectively enabled for certain MBeans in the
<allow> section. If the <commands> section is missing completely, access to all commands is allowed.

All Jolokia commands described in Chapter 6, Jolokia Protocol can be used in this section:

read
Reading of MBean attributes

write
Setting of MBean attributes

exec
Execution of JMX operations

list
List the available MBeans along with their supported attributes and operations.

search

Jolokia (1.7.0) 34

http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Searching for MBeans

version
Getting version and server information

In the following example, access is granted to the read, list, search and version command, but not
to write and exec operations.

<commands>
<command>read</command>
<command>list</command>
<command>version</command>
<command>search</command>

</commands>

4.1.3. Allow and deny access to certain MBeans

Within an <allow> section, access to MBeans can be granted regardless of the operations specified
in the <commands> section. The reverse is true for the <deny> section: It rejects access to the MBeans
specified here. Both sections contain one or more <mbean> elements which have a format like:

<mbean>
<name>java.lang:type=Memory</name>
<attribute>*Memory*</attribute>
<attribute mode="read">Verbose</attribute>
<operation>gc</operation>

</mbean>

Within the <name> section the name of the MBean is specified. This can bei either a complete
ObjectName or a MBean pattern containing wildcards. The value given here must conform to the
JMX specification for a valid ObjectName. On this MBean (or MBeans if name is a pattern), attributes
are specified within one or more <attribute> elements and operations within one or more
<operation> elements. The content can also be a pattern, which uses a wildcard *. e.g.
<attribute>*</attribute> specifies all attributes on the given MBean. If for an <attribute> element
the XML attribute mode="read" is given, then this attribute can be accessed only read-only.

4.1.4. HTTP method restrictions

Finally, access can be restricted based on the HTTP method with which an Jolokia request was
received with the <http> element. Method allowed (post or get) are specified with an <method> inner
element. The following example restricts the access to POST requests only:

<http>
<method>post</method>

</http>

It the <http> section is missing completely, any HTTP method can be used.

Security

Jolokia (1.7.0) 35

4.1.5. Cross-Origin Resource Sharing (CORS) restrictions

Jolokia (since version 1.0.3) supports the W3C specification for Cross-Origin Resource Sharing (also
known as "CORS") which allows browser to access resources which are located on a different server
than the calling script is loaded from. This specification provides a controlled way to come around the
same origin policy. Most contemporary browsers support CORS.

By default Jolokia allows cross origin access from any host. This can be limited to certain hosts by
using <allow-origin> sections within a <cors> sections. This tags can contain the origin URL
provided by browsers with the Origin: header literally or a wildcard specification with *.

<cors>
<!-- Allow cross origin access from www.jolokia.org ... -->
<allow-origin>http://www.jolokia.org</allow-origin>

<!-- ... and all servers from jmx4perl.org with any protocol ->
<allow-origin>*://*.jmx4perl.org</allow-origin>

<!-- Check for the proper origin on the server side, too -->
<strict-checking/>

</cors>

If the option <strict-checking/> is given in this section, too, then the given patterns are not only used
for CORS checking but also every request is checked on the server side whether the Origin: or
Referer: header matches one of the given patterns. If neither Origin: nor Referer: is given and strict
checking is enabled, then the access is denied. This useful for protecting against Cross-Site Request
Forgery.

Please note that <strict-checking/> might not be good enough because of potential browser bugs
which could allow to forge the origin header. Examples of these issues are arbitrary header injection
or referer and origin spoofing. User facing application which uses Jolokia has backend should
consider to implement additional measures like using the same-site flag on the session cookie.

4.1.6. Example for a security policy

The following complete example applies various access restrictions:

• Access is only allowed for clients coming from localhost

• Only HTTP Post requests are allowed

• By default, only read and list requests are allowed.

• A single exec request is allowed for triggering garbage collection.

• Read access to the C3P0 connection pool is restricted to forbid fetching the pool's properties,
which in fact contains the DB password as clear text.

<?xml version="1.0" encoding="utf-8"?>

<restrict>

Security

Jolokia (1.7.0) 36

http://www.w3.org/TR/cors/
http://caniuse.com/#search=CORS
https://blog.bentkowski.info/2018/06/setting-arbitrary-request-headers-in.html
https://www.brokenbrowser.com/referer-spoofing-defeating-xss-filter/
https://tools.ietf.org/html/draft-west-first-party-cookies-07

<remote>
<host>127.0.0.1</host>

</remote>

<http>
<method>post</method>

</http>

<commands>
<command>read</command>
<command>list</command>

</commands>

<allow>
<mbean>

<name>java.lang:type=Memory</name>
<operation>gc</operation>

</mbean>
</allow>

<deny>
<mbean>

<name>com.mchange.v2.c3p0:type=PooledDataSource,*</name>
<attribute>properties</attribute>

</mbean>
</deny>

</restrict>

4.1.7. Policy Location

A great tool which helps in repackaging an agent for inclusion of a jolokia-access.xml policy file
is the command line tool jolokia, which comes with the jmx4perl distribution. See Chapter 10,
Tools for an introduction.

But how do the agents lookup the policy file ? By default, the agents will lookup for a policy file
top-level in the classpath under the name jolokia-access.xml. Hence for the war agent, the policy file
must be packaged within the war at WEB-INF/classes/jolokia-access.xml, for all other agents at
/jolokia-access.xml. The location can be overwritten with the configuration parameter
policyLocation, which has to be set differently depending on the agent type. Please refer to
Chapter 3, Agents for more details. The value of this init parameter can be any URL which can
loaded by the JVM. A special case is an URL with the scheme classpath: which results in a lookup of
the policy file within the classpath. As stated above, the default value of this parameter is
classpath:/jolokia-access.xml. If a non-classpath URL is provided with this parameter, and the
target policy file could not be found then access is completely denied. If a classpath lookup fails then
access is globally granted and a warning is given on standard output.

The parameter specified with policyLocation can contain placeholders:

• $ip: IP - Address

• $host : Host - Address

Security

Jolokia (1.7.0) 37

http://search.cpan.org/~roland/jmx4perl/scripts/jolokia
http://www.jmx4perl.org

• ${prop:foo} : System property foo

• ${env:FOO} : Environment variable FOO

4.2. Jolokia Restrictors

In order to provide fine grained security, Jolokia using the abstract concept of an Restrictor. It is
represented by the Java interface org.jolokia.restrictor.Restrictor and comes with several
implementations. The most prominent one is the PolicyRestrictor which is described in Section 4.1,
“Policy based security”. This is also the restrictor which is active by default. For special needs, it is
possible to provide a custom implementation of this interface for the WAR and OSGi agents. It is
recommended to subclass either org.jolokia.restrictor.AllowAllRestrictor or
org.jolokia.restrictor.DenyAllRestrictor.

For the WAR agent (Section 3.1, “Java EE Agent (WAR)”), a subclass of
org.jolokia.http.AgentServlet should be created which overrides the createRestrictor()

public class RestrictedAgentServlet extends AgentServlet {

@Override
protected Restrictor createRestrictor(String policyLocation) {

return new MyOwnRestrictor();
}

}

policyLocation is a URL pointing to the policy file, which is either the default value
classpath:/jolokia-access.xml or the value specified with the init parameter policyLocation. This
servlet can then be easily configured in a custom web.xml the same way as the Jolokia agent.

For programmatic usage there is an even simpler way: AgentServlet provides an constructor which
takes an restrictor as argument, so no sublcassing is required in this case.

For an OSGi agent (Section 3.2, “OSGi Agents”), org.jolokia.osgi.servlet.JolokiaServlet is the
proper extension point. It can be subclassed the same way as shown above and allows a restrictor
implementation as constructor parameter, too. In contrast to AgentServlet this class is also OSGi
exported and can be referenced from other bundles. Additionally, the OSGi agent can also pick up a
restrictor as an OSGi service. See Section 3.2, “OSGi Agents” for details.

Security

Jolokia (1.7.0) 38

Chapter 5. Proxy Mode
Using Jolokia in proxy mode enables for agentless operation on the target server. A dedicated agent
deployment proxies by accepting Jolokia requests as input, translating them to JSR-160 requests for
the target. This setup is described in Chapter 2, Architecture. As noted there, the real target is given
within the original request, which must be sent as a POST request.

Agents of all types support the proxy mode. However, since one has usually the free choice of
platform for a dedicated Jolokia proxy, an environment optimized for HTTP communication should be
used. These are either servlet container or Java EE server hosting the WAR agent or an OSGi
runtime with an OSGi HttpService (which in turn is typically based on an embedded servlet container
like Tomcat or Jetty). The two other agents, the Mule and JVM agents are not that well suited for this
job and do not contain the proxy.

Please note that the proxy mode is not switched on by default since version 1.5.0. You have to
explicitly switch it on for the WAR or OSGI agent:

• Repackaging the jolokia.war and adapt web.xml to include the init option dispatcherClasses with a
value org.jolokia.jsr160.Jsr160RequestDispatcher.

• Set the system property org.jolokia.jsr160ProxyEnabled to true

• Set the environment variable JOLOKIA_JSR160_PROXY_ENABLED to true

The first option requires you to repackage the jolokia.war and add the following section to the
web.xml descriptor:

<init-param>
<description>
Classnames (comma separated) of RequestDispatcher used in addition
to the LocalRequestDispatcher

</description>
<param-name>dispatcherClasses</param-name>
<param-value>org.jolokia.jsr160.Jsr160RequestDispatcher</param-value>

</init-param>

The two other options by using a Java system property or an environment variable do not require a
repackaging, so these are the recommended way.

Additionally you can configured a white list with patterns for all allowed JMX service URL in a Jolokia
Request. This white list is a plain text file which contains Patterns line by line. Lines starting with # are
ignored. This file can be configured in various ways:

• Repackaging the jolokia.war and adapt web.xml to include the init option
jsr160ProxyAllowedTargets with a file path to the white list. This should be an absolute path or a
relative path if you know where your Java EE server sets the current directory.

• Set the system property org.jolokia.jsr160ProxyAllowedTargets to the path of the whitelist

• Set the environment variable JOLOKIA_JSR160_PROXY_ALLOWED_TARGETS to the path of the whitelist.

Jolokia (1.7.0) 39

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

By default the following patterns are disallowed, but you can re-enable them when providing them in
the whitelist:

Disallow all JNDI lookups via LDAP
service:jmx:rmi:///jndi/ldap:.*

In any case it is highly recommended to use a dedicated Java EE servlet server for the JSR-160
proxy which is secured by configuring the server authentication properly for this servlet. An
unprotected Jolokia proxy can be tricked to execute local code by a malicious attacker. As said
previously, the Jolokia proxy should be avoided if possible in favor of direct access over the Jolokia
protocol.

All client libraries (jmx4perl, Java and Javascript) support the usage of proxy mode in its API.

5.1. Limitations of proxy mode

The proxy mode has some limitations compared to the direct agent mode, so it is recommended to
use a direct agent deployment if possible. The limitations are:

• There is no automatic merging of JMX MBeanServers as in the case of the direct mode. Most
application servers uses their own MBeanServer in addition to the PlatformMBeanServer (which is
always present). Each MBean is registered only in one MBeanServer. The choice of which
MBeanServer to use has to be given up front, usually as a part of the JMX Service URL. But even
then (as it is the case for JBoss 5.1) you might run into problems when selecting the proper
MBeanServer.

• Proxying adds an additional remote layer which causes additional problems. I.e. the complex
operations like list might fail in the proxy mode because of serialization issues. E.g. for JBoss it
happens that certain MBeanInfo objects requested for the list operation are not serializable. This is
a bug of JBoss, but I expect similar limitations for other application servers as well.

• Certain workarounds (like the JBoss "can not find MXBeans before MBeanInfo has been fetched"
bug) works only in agent mode.

• It is astonishingly hard to set up an application server for JSR-160 export. And there are even
cases (combinations of JDK and AppServer Version) which don't work at all properly (e.g. JDK 1.5
and JBoss 5).

• The proxy mode can theoretically be exploited for local code execution if not secured properly. So
its is highly recommended to not make the agent available without any authentication to any non
trusted environment. Also the new whitelist feature prevents redirecting to arbitrary JMX Service
URLs.

Proxy Mode

Jolokia (1.7.0) 40

1This document will avoid the term REST as much as possible in order to avoid provoking any dogmatic resentments.

Chapter 6. Jolokia Protocol
Jolokia uses a JSON-over-HTTP protocol which is described in this chapter. The communication is
based on a request-response paradigm, where each request results in a single response.

GET URLs are chatty
Keep in mind that many web servers log the requested path of every request, including
parameters passed to a GET request, so sending messages over GET often bloats server logs.

Jolokia requests can be sent in two ways: Either as a HTTP GET request, in which case the request
parameters are encoded completely in the URL. Or as a POST request where the request is put into
a JSON payload in the HTTP request's body. GET based requests are mostly suitable for simple use
cases and for testing the agent via a browser. The focus here is on simplicity. POST based requests
uses a JSON representation of the request within the HTTP body. They are more appropriate for
complex requests and provide some additional features (e.g. bulk requests are only possible with
POST).

The response returned by the agent uses always JSON for its data representation. It has the same
format regardless whether GET or POST requests are used.

The rest of this chapter is divided into two parts: First, the general structure of requests and
responses are explained after which the representation of Jolokia supported operations defined.

Note
Unfortunately the term operation is used in different contexts which should be
distinguished from one another. Jolokia operations denote the various kind of Jolokia
requests, whereas JMX operations are methods which can be invoked on an JMX MBean.
Whenever the context requires it, this documents uses Jolokia or JMX as prefix.

6.1. Requests and Responses

Jolokia knows about two different styles of handling requests, which are distinguished by the HTTP
method used: GET or POST. Regardless of what method is used, the agent doesn't keep any state
on the server side (except of course that MBeans are obviously stateful most of the time). So in this
aspect, the communication can be considered REST like1.

6.1.1. GET requests

The simplest way to access the Jolokia agent is by sending HTTP GET requests. These requests
encode all their parameters within the access URL. Typically, Jolokia uses the path-info part of an
URL to extract the parameters. Within the path-info, each part is separated by a slash (/). In general,
the request URL looks like

<base-url>/<type>/<arg1>/<arg2>/..../

Jolokia (1.7.0) 41

http://en.wikipedia.org/wiki/Representational_State_Transfer

2 A backslash (\) can not be used, since most servlet container translate a backslash into a forward slash on the fly when
given in an URL.

The <base-url> specifies the URL under which the agent is accessible. It normally looks like
http://localhost:8080/jolokia, but depends on your deployment setup. The last part of this URL is
the context root of the deployed agent, which by default is based on the agent's filename (e.g.
jolokia.war). <type> specifies one of the supported Jolokia operations (described in the next
section), followed by one or more operation-specific parameters separated by slashes.

For example, the following URL executes a read Jolokia operation on the MBean
java.lang:type=Memory for reading the attribute HeapMemoryUsage (see Section 6.2.1, “Reading
attributes (read)”). It is assumed, that the agent is reachable under the base URL
http://localhost:8080/jolokia:

http://localhost:8080/jolokia/read/java.lang:type=Memory/HeapMemoryUsage

Why escaping ?
You might wonder why simple URI encoding isn't enough for escaping slashes. The reason is
that JBoss/Tomcat has a strange behaviour when returning an HTTP response HTTP/1.x 400

Invalid URI: noSlash for any URL which contains an escaped slash in the path info (i.e. %2F).
The reason behind this behaviour is security related, slashes get decoded on the agent side
before the agent-servlet gets the request. Other appservers might exhibit a similar behaviour, so
Jolokia uses an own escaping mechanism.

If one of the request parts contain a slash (/) (e.g. as part of you bean's name) it needs to be
escaped. An exclamation mark (!) is used as escape character2. An exclamation mark itself needs to
be doubled for escaping. Any other characted preceded by an exclamation mark is taken literally.
Table Table 6.1, “Escaping rules” illustrates the escape rules as used in GET requests. Also, if
quotes are part of an GET request the need to be escaped with !".

Table 6.1. Escaping rules

Escaped Unescaped

!/ /

!! !

!" "

!(anything else) (anything else)

For example, to read the atrribute State on the MBean named jboss.jmx:alias=jmx/rmi/RMIAdaptor,
an access URL like this has to be constructed:

.../read/jboss.jmx:alias=jmx!/rmi!/RMIAdaptor/State

Jolokia Protocol

Jolokia (1.7.0) 42

Client libraries like JMX::Jmx4Perl do this sort of escaping transparently.

Escaping can be avoided alltogether if a slightly different variant for a request is used (which doesn't
look that REST-stylish, though). Instead of providing the information as path-info, a query parameter
p can be used instead. This should be URL encoded, though. For the example above, the alternative
is

http://localhost:8080/jolokia?p=/read/jboss.jmx:alias=jmx%2Frmi%2FRMIAdaptor/State

This format must be used for GET requests containing backslashes (\) since backslashes can not be
sent as part of an URL at all.

6.1.2. POST requests

POST requests are the most powerful way to communicate with the Jolokia agent. There are fewer
escaping issues and it allows for features which are not available with GET requests. POST requests
uses a fixed URL and put their payload within the HTTP request's body. This payload is represented
in JSON, a data serialization format originating from the JavaScript world.

The JSON format for a single request is a JSON object, which is essentially a map with keys (or
attributes) and values. All requests have a common mandatory attribute, type, which specifies the
kind of JMX operation to perform. The other attributes are either operation specific as described in
Section 6.2, “Jolokia operations” or are processing parameters which influence the overall behaviour
and can be mixed in to any request. See Section 6.3, “Processing parameters” for details. Operation
specific attributes can be either mandatory or optional and depend on the operation type. In the
following, if not mentioned otherwise, attributes are mandatory. Processing parameters are always
optional, though.

A sample read request in JSON format looks like the following example. It has a type "read" (case
doesn't matter) and the three attributes mbean, attribute and path which are specific to a read
request.

Example 6.1. JSON Request

{
"type" : "read",
"mbean" : "java.lang:type=Memory",
"attribute" : "HeapMemoryUsage",
"path" : "used",

}

Each request JSON object results in a single JSON response object contained in the HTTP answer's
body. A bulk request contains multiple Jolokia requests within a single HTTP request. This is done by
putting individual Jolokia requests into a JSON array:

[
{

Jolokia Protocol

Jolokia (1.7.0) 43

http://search.cpan.org/~roland/jmx4perl
http://www.json.org

3 Seconds since 1.1.1970

"type" : "read",
"attribute" : "HeapMemoryUsage",
"mbean" : "java.lang:type=Memory",
"path" : "used",

},
{
"type" : "search"
"mbean" : "*:type=Memory,*",

}
]

This request will result in a JSON array containing multiple JSON responses within the HTTP
response. They are returned in same order as the requests in the initial bulk request.

6.1.3. Responses

Responses are always encoded in UTF-8 JSON, regardless whether the requst was a GET or POST
request. In general, two kinds of responses can be classified: In the normal case, a HTTP Response
with response code 200 is returned, containing the result of the operation as a JSON payload. In
case of an error, a 4xx or 5xx code will be returned and the JSON payload contains details about the
error occured (e.g. 404 means "not found"). (See this page for more information about HTTP error
codes..). If the processing option ifModifiedSince is given and the requested value as been not
changed since then, a response code of 304 is returned. This option is currently only supported by
the LIST request, for other request types the value is always fetched.

In the non-error case a JSON response looks mostly the same for each request type except for the
value attribute which is request type specific.

The format of a single Jolokia response is

Example 6.2. JSON Response

{
"value": ,
"status" : 200,
"timestamp" : 1244839118,
"request": {

"type": ...,
....

},
"history":[

{"value": ... ,
"timestamp" : 1244839045

},
]

}

For successful requests, the status is always 200 (the HTTP success code). The timestamp contains
the epoch time3 when the request has been handled. The request leading to this response can be

Jolokia Protocol

Jolokia (1.7.0) 44

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

4 If the server exception is a subtype of MBeanException, the wrapped exception's message is used.

found under the attribute request. Finally and optionally, if history tracking is switched on (see
Section 6.5, “Tracking historical values”), an entry with key history contains a list of historical values
along with their timestamps. History tracking is only available for certain type of requests (read, write
and exec). The value is specific for the type of request, it can be a single scalar value or a monster
JSON structure.

If an error occurs, the status will be a number different from 200. An error response looks like

{
"status":400,
"error_type":"java.lang.IllegalArgumentException",
"error":"java.lang.IllegalArgumentException: Invalid request type 'java.lang:type=Memory'",
"stacktrace":"java.lang.IllegalArgumentException: Invalid request type 'java.lang:type=Memory'\n

\tat org.cpan.jmx4perl.JmxRequest.extractType(Unknown Source)\n
\tat org.cpan.jmx4perl.JmxRequest.<init>(Unknown Source)"

}

For status codes it is important to distinguish status codes as they appear in Jolokia JSON response
objects and the HTTP status code of the (outer) HTTP response. There can be many Jolokia status
codes, one for each Jolokia request contained in the single HTTP request. The HTTP status code
merely reflect the status of agent itself (i.e. whether it could perform the operation at all), whereas the
Jolokia response status reflects the result of the operation (e.g. whether the performed operation
throws an exception). So it is not uncommon to have an HTTP status code of 200, but the contained
JSON response(s) indicate some errors.

I.e. the status has a code in the range 400 .. 499 or 500 .. 599 as it is specified for HTTP return
codes. The error member contains an error description. This is typically the message of an exception
occured on the agent side4. Finally, error_type contains the Java class name of the exception
occured. The stacktrace contains a Java stacktrace occured on the server side (if any stacktrace is
available).

For each type of operation, the format of the value entry is explained in Section 6.2, “Jolokia
operations”

6.1.4. Paths

An inner path points to a certain substructure (plain value, array, hash) within a a complex JSON
value. Think of it as something like "XPath lite". This is best explained by an example:

The attribute HeapMemoryUsage of the MBean java.lang:type=Memory can be requested with the URL
http://localhost:8080/jolokia/read/java.lang:type=Memory/HeapMemoryUsage which returns a
complex JSON structure like

{
"status" : 200,
"value" : {

"committed" : 18292736,
"used" : 15348352,
"max" : 532742144,
"init" : 0

},

Jolokia Protocol

Jolokia (1.7.0) 45

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

"request" : { },
"timestamp" :

}

In order to get to the value for used heap memory you should specify an inner path used, so that the
request http://localhost:8080/jolokia/read/java.lang:type=Memory/HeapMemoryUsage/used results
in a response of 15348352for the value:

{
"status" : 200,
"value" : 15348352,
"request" : { },
"timestamp" :

}

If the attribute contains arrays at some level, use a numeric index (0 based) as part of the inner path
if you want to traverse into this array.

For both, GET and POST requests, paths must be escaped as described in Table 6.1, “Escaping
rules” when they contain slashes (/) or exclamation marks (!).

Paths support wildcards * in a simple form. If given as a path part exclusively, it matches any entry
and path matching continues on the next level. This feature is especially useful when using pattern
read request together with paths. See Section 6.2.1, “Reading attributes (read)” for details. A * mixed
with other characters in a path part has no special meaning and is used literally.

6.2. Jolokia operations

6.2.1. Reading attributes (read)

Reading MBean attributes is probably the most used JMX method, especially when it comes to
monitoring. Concerning Jolokia, it is also the most powerful one with the richest semantics. Obviously
the value of a single attribute can be fetched, but Jolokia supports also fetching of a list of given
attributes on a single MBean or even on multiple MBeans matching a certain pattern.

Reading attributes are supported by both kinds of requests, GET and POST.

Note
Don't confuse fetching multiple attributes on possibly multiple MBeans with bulk requests.
A single read request will always result in a single read response, even when multiple
attribute values are fetched. Only the single response's structure of the value will differ
depending on what kind of read request was performed.

A read request for multiple attributes on the same MBean is initiated by giving a list of attributes to
the request. For a POST request this is an JSON array, for a GET request it is a comma separated
list of attribute names (where slashes and exclamation marks must be escaped as described in
Table 6.1, “Escaping rules”). If no attribute is provided, then all attributes are fetched. The MBean
name can be given as a pattern in which case the attributes are read on all matching MBeans. If a

Jolokia Protocol

Jolokia (1.7.0) 46

MBean pattern and multiple attributes are requested, then only the value of attributes which matches
both are returned, the others are ignored.

Paths can be used with pattern and multiple attribute read as well. In order to skip the extra value
levels introduced by a pattern read, the wildcard * can be used. For example, a read request for the
MBean Pattern java.lang:type=GarbageCollector,* for the Attribute LastGcInfo returns a complex
structure holding information about the last garbage collection. If one is interested only for the
duration of the garbage collection, a path used could be used if this request wouldn't be a pattern
request (i.e. refers a specific, single MBean). But in this case since a nested map with MBean and
Attribute names is returned, the path */*/used has to be used in order to skip the two extra levels for
applying the path. The two levels are returned nevertheless, though. Note that in the following
example the final value is not the full GC-Info but only the value of its used entry:

value: {
"java.lang:name=PS MarkSweep,type=GarbageCollector": {

LastGcInfo: null
},
"java.lang:name=PS Scavenge,type=GarbageCollector": {

LastGcInfo: 7
}

}

The following rule of thumb applies:

• If a wildcard is used, everything at that point in the path is matched. The next path parts are used
to match from there on. All the values on this level are included.

• Every other path part is literally compared against the values on that level. If there is a match, this
value is removed in the answer so that at the end you get back a structure with the values on the
wildcard levels and the leaves of the matched parts.

• If used with wildcards, paths behave also like filters. E.g. you can use a path */*/used on the
MBean pattern java.lang:* and get back only that portions which contains "used" as key, all others
are ignored.

6.2.1.1. GET read request

The GET URL for a read request has the following format:

<base-url>/read/<mbean name>/<attribute name>/<inner path>

Table 6.2. GET Read Request

Part Description Example

<mbean name> The ObjectName of the MBean
for which the attribute should be
fetched. It contains two parts: A
domain part and a list of
properties which are separated
by :. Properties themselves are

java.lang:type=Memory

Jolokia Protocol

Jolokia (1.7.0) 47

http://download.oracle.com/javase/6/docs/api/javax/management/ObjectName.html

Part Description Example

combined in a comma
separated list of key-value
pairs. This name can be a
pattern in which case multiple
MBeans are queried for the
attribute value.

<attribute name> Name of attribute to read. This
can be a list of Attribute names
separated by comma. Slashes
and exclamations marks need
to be escaped as described in
Table 6.1, “Escaping rules”. If
no attribute is given, all
attributes are read.

HeapMemoryUsage

<inner path> This optional part describes an
inner path as described in
Section 6.1.4, “Paths”

used

With this URL the used heap memory can be obtained:

http://localhost:8080/jolokia/read/java.lang:type=Memory/HeapMemoryUsage/used

6.2.1.2. POST read request

A the keys available for read POST requests are shown in the following table.

Table 6.3. POST Read Request

Key Description Example

type read

mbean MBean's ObjectName which
can be a pattern

java.lang:type=Memory

attribute Attribute name to read or a
JSON array containing a list of
attributes to read. No attribute
is given, then all attributes are
read.

HeapMemoryUsage, [

"HeapMemoryUsage",

"NonHeapMemoryUsage"]

path Inner path for accessing the
value of a complex value
(Section 6.1.4, “Paths”)

used

The following request fetches the number of active threads:

Jolokia Protocol

Jolokia (1.7.0) 48

{
"type":"read",
"mbean":"java.lang:type=Threading",
"attribute":"ThreadCount"

}

6.2.1.3. Read response

The general format of the JSON response is described in Section 6.1.3, “Responses” in detail. A
typical response for an attribute read operation for an URL like

http://localhost:8080/jolokia/read/java.lang:type=Memory/HeapMemoryUsage/

looks like

{
"value":{

"init":134217728,
"max":532742144,
"committed":133365760,
"used":19046472

},
"status":200,
"timestamp":1244839118,
"request":{

"mbean":"java.lang:type=Memory",
"type":"read",
"attribute":"HeapMemoryUsage"

},
"history":[{"value":{

"init":134217728,
"max":532742144,
"committed":133365760,
"used":18958208

},
"timestamp":1244839045

},
]

}

The value contains the response's value. For simple data types it is a scalar value, more complex
types are serialized into a JSON object. See Section 6.4, “Object serialization” for detail on object
serialization.

For a read request to a single MBean with multiple attributes, the returned value is a JSON object
with the attribute names as keys and their values as values. For example a request to
http://localhost:8080/jolokia/read/java.lang:type=Memory leads to

{
"timestamp": 1317151518,
"status": 200,

Jolokia Protocol

Jolokia (1.7.0) 49

"request": {"mbean":"java.lang:type=Memory","type":"read"},
"value":{

"Verbose": false,
"ObjectPendingFinalizationCount": 0,
"NonHeapMemoryUsage": {"max":136314880,"committed":26771456,"init":24317952,"used":15211720},
"HeapMemoryUsage": {"max":129957888,"committed":129957888,"init":0,"used":2880008}

}
}

A request to a MBean pattern returns as value a JSON object, with the MBean names as keys and
as value another JSON object with the attribute name as keys and the attribute values as values. For
example a request http://localhost:8080/jolokia/read/java.lang:type=*/HeapMemoryUsage returns
something like

{
"timestamp": 1317151980,
"status": 200,
"request": {"mbean":"java.lang:type=*","attribute":"HeapMemoryUsage","type":"read"},
"value": {

"java.lang:type=Memory": {
"HeapMemoryUsage": {"max":129957888,"committed":129957888,"init":0,"used":3080912}

}
}
}

6.2.2. Writing attributes (write)

Writing an attribute is quite similar to reading one, except that the request takes an additional value
element.

6.2.2.1. GET write request

Writing an attribute wit an GET request, an URL with the following format has to be used:

<base url>/write/<mbean name>/<attribute name>/<value>/<inner path>

Table 6.4. GET Write Request

Part Description Example

<mbean name> MBean's ObjectName java.lang:type=ClassLoading

<attribute name> Name of attribute to set Verbose

<value> The attribute name to value.
The value must be serializable
as described in Section 6.4.2,
“Request parameter

true

Jolokia Protocol

Jolokia (1.7.0) 50

Part Description Example

serialization”.

<path> Inner path for accessing the
parent object on which to set
the value. (See also
Section 6.1.4, “Paths”). Note,
that this is not the path to the
attribute itself, but to the object
carrying this attribute. With a
given path it is possible to
deeply set an value on a
complex object.

For example, you can set the garbage collector to verbose mode by using something like

http://localhost:8080/jolokia/write/java.lang:type=Memory/Verbose/true

6.2.2.2. POST write request

The keys which are evaluated for a POST write request are:

Table 6.5. POST Write Request

Key Description Example

type write

mbean MBean's ObjectName java.lang:type=ClassLoading

attribute Name of attribute to set Verbose

value The attribute name to value.
The value must be serializable
as described in Section 6.4.2,
“Request parameter
serialization”.

true

path An optional inner path for
specifying an inner object on
which to set the value. See
Section 6.1.4, “Paths” for more
on inner paths.

6.2.2.3. Write response

As response for a write operation the old attribute's value is returned. For a request

http://localhost:8080/jolokia/write/java.lang:type=ClassLoading/Verbose/true

Jolokia Protocol

Jolokia (1.7.0) 51

you get the answer (supposed that verbose mode was switched off for class loading at the time this
request was sent)

{
"value":"false",
"status":200,
"request": {

"mbean":"java.lang:type=ClassLoading",
"type":"write",
"attribute":"Verbose",
"value":true

}
}

The response is quite similar to the read operation except for the additional value element in the
request (and of course, the different type).

6.2.3. Executing JMX operations (exec)

Beside attribute provides a way for the execution of exposed JMX operations with optional
arguments. The same as for writing attributes, Jolokia must be able to serialize the arguments. See
Section 6.4, “Object serialization” for details. Execution of overloaded methods is supported. The
JMX specifications recommends to avoid overloaded methods when exposing them via JMX, though.

6.2.3.1. GET exec request

The format of an GET exec request is

<base url>/exec/<mbean name>/<operation name>/<arg1>/<arg2>/....

Table 6.6. GET Exec Request

Part Description Example

<mbean name> MBean's ObjectName java.lang:type=Threading

<operation name> Name of the operation to
execute. If this is an overloaded
method, it is mandatory to
provide a method signature as
well. A signature consist the
fully qualified argument class
names or native types,
separated by commas and
enclosed with parentheses. For
calling a non-argument
overloaded method use () as
signature.

loadUsers(java.lang.String,int)

<arg1>, <arg2>, ... String representation for the
arguments required to execute
this operation. Only certain data

"true","true"

Jolokia Protocol

Jolokia (1.7.0) 52

Part Description Example

types can be used here as
described in Section 6.4.2,
“Request parameter
serialization”.

The following request will trigger a garbage collection:

http://localhost:8080/jolokia/exec/java.lang:type=Memory/gc

6.2.3.2. POST exec request

Table 6.7. POST Exec Request

Key Description Example

type exec

mbean MBean's ObjectName java.lang:type=Threading

operation The operation to execute,
optionally with a signature as
described above.

dumpAllThreads

arguments An array of arguments for
invoking this operation. The
value must be serializable as
described in Section 6.4.2,
“Request parameter
serialization”.

[true,true]

The following request dumps all threads (along with locked monitors and locked synchronizers, thats
what the boolean arguments are for):

{
"type":"EXEC",
"mbean":"java.lang:type=Threading",
"operation":"dumpAllThreads",
"arguments":[true,true]

}

6.2.3.3. Exec response

For an exec operation, the response contains the return value of the operation. null is returned if
either the operation returns a null value or the operation is declared as void. A typical response for an
URL like

http://localhost:8080/jolokia/exec/java.util.logging:type=Logging/setLoggerLevel/global/INFO

Jolokia Protocol

Jolokia (1.7.0) 53

looks like

{
"value":null,
"status":200,
"request": {

"type":"exec",
"mbean":"java.util.logging:type=Logging",
"operation":"setLoggerLevel",
"arguments":["global","INFO"]

}
}

The return value get serialized as described in Section 6.4, “Object serialization”.

6.2.4. Searching MBeans (search)

With the Jolokia search operation the agent can be queried for MBeans with a given pattern.
Searching will be performed on every MBeanServer found by the agent.

6.2.4.1. GET search request

The format of the search GET URL is:

<base-url>/search/<pattern>

This mode is used to query for certain MBean. It takes a single argument pattern for specifying the
search parameter like in

http://localhost:8080/jolokia/search/*:j2eeType=J2EEServer,*

You can use patterns as described here, i.e. it may contain wildcards like * and ?. The Mbean names
matching the query are returned as a list within the response.

6.2.4.2. POST search request

A search POST request knows the following keys:

Table 6.8. POST Search Request

Key Description Example

type search

mbean The MBean pattern to search
for

java.lang:*

The following request searches for all MBeans registered in the domain java.lang

Jolokia Protocol

Jolokia (1.7.0) 54

http://java.sun.com/j2se/1.5.0/docs/api/javax/management/ObjectName.html

{
"type":"SEARCH",
"mbean":"java.lang:*"

}

6.2.4.3. Search response

The answer is a list of MBean names which matches the pattern or an empty list if there was no
match.

For example, the request

http://localhost:8888/jolokia/search/*:j2eeType=J2EEServer,*

results in

{
"value": [

"jboss.management.local:j2eeType=J2EEServer,name=Local"
],

"status":200,
"timestamp":1245305648,
"request": {

"mbean":"*:j2eeType=J2EEServer,*","type":"search"
}

}

The returned MBean names are properly quoted so that they can be directly used as input for other
requests.

6.2.5. Listing MBeans (list)

The list operation collects information about accessible MBeans. This information includes the
MBean names, their attributes, operations and notifications along with type information and
description (as far as they are provided by the MBean author which doesn't seem to be often the
case).

6.2.5.1. GET list request

The GET request format for a Jolokia list request is

<base-url>/list/<inner path>

The <inner path>, as described in Section 6.1.4, “Paths” specifies a subset of the complete
response. You can use this to select a specific domain, MBean or attribute/operation. See the next
section for the format of the complete response.

6.2.5.2. POST list request

Jolokia Protocol

Jolokia (1.7.0) 55

http://download.oracle.com/javase/1.5.0/docs/api/javax/management/ObjectName.html

A list POST request has the following keys:

Table 6.9. POST list Request

Key Description Example

type list

path Inner path for accessing the
value of a subset of the
complete list (Section 6.1.4,
“Paths”).

java.lang/type=Memory/attr

The following request fetches the information about the MBean java.lang:type=Memory

{
"type":"LIST",
"path":"java.lang/type=Memory"

}

6.2.5.3. List response

The value has the following format:

{
<domain> :
{
<prop list> :
{

"attr" :
{
<attr name> :
{
"type" : <attribute type>,
"desc" : <textual description of attribute>,
"rw" : true/false

},
....

},
"op" :
{

<operation name> :
{
"args" : [

{
"type" : <argument type>
"name" : <argument name>
"desc" : <textual description of argument>

},
.....

],
"ret" : <return type>,
"desc" : <textual description of operation>

},
.....

Jolokia Protocol

Jolokia (1.7.0) 56

},
"not" :
{

"name" : <name>,
"desc" : <desc>,
"types" : [<type1>, <type2>]

}
},
....

},
....

}

The domain name and the property list together uniquely identify a single MBean. The property list is
in the so called canonical order, i.e. in the form "<key1>=<val1>,<key2>=<val2>,.." where the keys
are ordered alphabetically. Each MBean has zero or more attributes and operations which can be
reached in an MBeans JSON object with the keys attr and op respectively. Within these groups the
contained information is explained above in the schema and consist of Java types for attributes,
arguments and return values, descriptive information and whether an attribute is writable (rw == true)
or read-only.

As for reading attributes you can fetch a subset of this information using an path. E.g a path of
domain/prop-list would return the value for a single bean only. For example, a request

http://localhost:8080/jolokia/list/java.lang/type=Memory

results in an answer

{
"value":
{
"op":
{
"gc":
{

"args":[],
"ret":"void",
"desc":"gc"

}
},
"class":"sun.management.MemoryImpl",
"attr":
{
"NonHeapMemoryUsage":
{

"type":"javax.management.openmbean.CompositeData",
"rw":false,
"desc":"NonHeapMemoryUsage"

},
"Verbose":
{

"type":"boolean",
"rw":true,
"desc":"Verbose"

},
"HeapMemoryUsage":

Jolokia Protocol

Jolokia (1.7.0) 57

{
"type":"javax.management.openmbean.CompositeData",
"rw":false,
"desc":"HeapMemoryUsage"

},
"ObjectPendingFinalizationCount":
{

"type":"int",
"rw":false,
"desc":"ObjectPendingFinalizationCount"

}
}

},
"status":200,
"request":
{
"type":"list",
"path":"java.lang\/type=Memory"

}
}

6.2.5.4. Restrict depth of the returned tree

The optional parameter maxDepth can be used to restrict the depth of the return tree. Two value are
possible: A maxDepth of 1 restricts the return value to a map with the JMX domains as keys, a
maxDepth of 2 truncates the map returned to the domain names (first level) and the MBean's
properties (second level). The final values of the maps don't have any meaning and are dummy
values.

6.2.6. Getting the agent version (version)

The Jolokia command version returns the version of the Jolokia agent along with the protocol
version.

6.2.6.1. GET version request

The GET URL for a version request has the following format:

<base-url>/version

For GET request the version part can be omitted since this is the default command if no command is
provided as path info.

6.2.6.2. POST version request

A version POST request has only a single key type which has to be set to version.

6.2.6.3. Version response

The response value for a version request looks like:

{

Jolokia Protocol

Jolokia (1.7.0) 58

"timestamp":1287143106,
"status":200,
"request":{"type":"version"},
"value":{

"protocol":"7.1",
"agent":"1.2.0",
"config": {

"agentDescription": "Servicemix ESB",
"agentId": "EF87BE-jvm",
"agentType": "jvm",
"serializeException": "false"

},
"info": {

"product": "glassfish",
"vendor": "Oracle",
"version": "4.0",
"extraInfo": {

"amxBooted": false
},

}
}

protocol in the response value contains the protocol version used, agent is the version of the Jolokia
agent. See Section 6.8, “Jolokia protocol versions” for the various protocol versions and the
interoperability. If the agent is able to detect the server, additional meta information about this server
is returned (i.e. the product name, the vendor and optionally some extra information added by the
server detector).

6.3. Processing parameters

Jolokia operations can be influenced by so-called processing parameters. These parameters are
provided differently for POST and GET requests.

For GET request, the processing parameter are given as normal query parameters:

<GET request URL>?param1=value1¶m2=value2&...

For example the request

http://localhost:8080/jolokia/list?maxObjects=100

will limit the response to at max 100 values.

POST request take the processing instructions within the JSON request below the key config:

{
"type" : "list"
"config" : {

"maxObjects" : 100
}

}

If a POST request carries also query parameters in the URL, these processing parameters are

Jolokia Protocol

Jolokia (1.7.0) 59

merged with the ones given within the request. Configuration options given in the request take
precedence over the ones given as query parameters.

The list of known processing parameters is:

maxDepth

Maximum depth of the tree traversal into a bean's properties. The maximum value as configured
in the agent's configuration is a hard limit and cannot be exceeded by a query parameter.

maxCollectionSize

For collections (lists, maps) this is the maximum size.

maxObjects

Number of objects to visit in total. A hard limit can be configured in the agent's configuration.

ignoreErrors

If set to "true", a Jolokia operation will not return an error if an JMX operation fails, but includes
the exception message as value. This is useful for e.g. the read operation when requesting
multiple attributes' values. Default: false

mimeType

The MIME type to return for the response. By default, this is text/plain, but it can be useful for
some tools to change it to application/json. Init parameters can be used to change the default
mime type. Only text/plain and application/json are allowed. For any other value Jolokia will
fallback to text/plain.

canonicalNaming

Defaults to true to return the canonical format of property lists. If set to false then the default
unsorted property list is returned.

includeStackTrace

If set to true, then in case of an error the stack trace is included. With false no stack trace will be
returned, and when this parameter is set to runtime only for RuntimeExceptions a stack trace is
put into the error response. Default is true if not set otherwise in the global agent configuration.

serializeException

If this parameter is set to true then a serialized version of the exception is included in an error
response. This value is put under the key error_value in the response value. By default this is set
to false except when the agent global configuration option is configured otherwise.

ifModifiedSince

If this parameter is given, its value is interpreted as epoch time (seconds since 1.1.1970) and if
the requested value did not change since this time, an empty response (with no value) is returned
and the response status code is set to 304 ("Not modified"). This option is currently only
supported for LIST requests. The time value can be extracted from a previous' response
timestamp.

6.4. Object serialization

Jolokia has some object serialization facilities in order to convert complex Java data types to JSON
and vice versa. Serialization works in both ways in requests and responses, but the capabilities differ.

Jolokia Protocol

Jolokia (1.7.0) 60

5 For JBoss older than version 7, there might be use cases when custom enums need to be serialized. In this case, the type
information must be available to the agent, too. For the standard PlatformMBeanServer serialization should work always,
regardless whether the customer enum type is accessible by the agent or not.

Complex data types returned from the agent can be serialized completely into a JSON value object. It
can detect cycles in the object graph and provides a way to limit the depth of serialization. For certain
types (like File or ObjectName) it uses simplifier to not expose internal and redundant information.

Object values used for values in write operations and arguments in exec, type support is limited to a
handful of data types.

6.4.1. Response value serialization

Jolokia can serialize any object into a JSON representation when generating the response. It uses
some specific converters for certain well known data type with a generic bean converter as fallback.

The following types are directly supported:

• Arrays and java.util.List are converted to JSON arrays

• java.util.Map gets converted into a JSON object. Note, however, that JSON Object keys are
always strings.

• Enums are converted to their canonical name.5

• javax.management.openmbean.CompositeData is converted in a JSON object, with the keys taken
from the CompositeData's key set and the value are its values.

• javax.management.openmbean.TabularData is serialized differently depending on its internal
structure. See below for a detailed explanation of this serialization mechanism including examples.

• java.lang.Class is converted to a JSON object with keys name (the class name) and interfaces

(the implemented interfaces, if any)

• java.io.File becomes a JSON object with keys name (file name), modified (date of last
modification), length (file size in bytes), directory (whether the file is a directory), canonicalPath
(the canonical path) and exists.

• javax.management.ObjectName is converted into a JSON object with the single key objectName.

• java.net.URL becomes a JSON object with the key url containing the URL as String.

• java.util.Date is represented in an ISO-8601 format. When used with a path time the milliseconds
since 1.1.1970 00:00 UTC are returned.

• org.w3c.dom.Element is translated into a JSON object with the properties name, value and
hasChildNodes.

• java.math.BigInteger becomes a JSON object with the key bigint containing the big integer value
as String.

Primitive and simple types (like String) are directly converted into their string presentation. All objects
not covered by the list above are serialized in JSON objects, where the keys are the public bean
properties of the object and the values are serialized (recursively) as described.

TabularData serialization depends on the type of the index. It is serialized into one or multiple nested
JSON objects where the keys are derived from its TabularType.indexNames(). If there is a single

Jolokia Protocol

Jolokia (1.7.0) 61

valued index with a simple type (i.e. an instance of javax.management.openmbean.SimpleType), the
index's value is the key and a TabularData's row (which in turn is a CompositeData) is a map. With
multi valued, simple typed, keys, the map is nested (first level: first index's value, second level:
second index's value and so on). For the serialization of TabularData resulting from a MXBean

translation for maps, see Section 6.4.3, “Jolokia and MXBeans”. If any of the declared index keys of a
TabularData is a complex type (i.e. not a SimpleType), then this simple serialization into maps of maps
is not possible anymore, since for JSON, map keys must be simple types. In this case, a more
generic serialization is used in which case an JSON object with two keys is returned: indexNames is an
array with the TabularData's indexes as names and values is the array containing the values as
JSON object with the corresponding rows as values (including the indexes).

For example if there is a single valued key key, then the returned JSON looks like

{
"mykey1" : { "key" : "mkey1", "item" : "value1", }
"mykey2" : { "key" : "mkey2", "item" : "value2", }
....

}

For multi valued keys of simple open types (i.e. TabularType.getIndexNames()) is a list with more than
one element but all of them are simple types), the returned JSON structure looks like (index names
here are key and innerkey):

{
"mykey1" : {
"myinner1" : { "key" : "mkey1", "innerkey" : "myinner1", "item" : "value1", }
"myinner2" : { "key" : "mkey1", "innerkey" : "myinner2", "item" : "value1", }
....

},
"mykey2" : {
"second1" : { "key" : "mkey2", "innerkey" : "second1", "item" : "value1", }
"second2" : { "key" : "mkey2", "innerkey" : "second2", "item" : "value1", }
....

}
....

}

If keys are used, which themselves are complex objects (like CompositeData), this hierarchical map
structure can not be used. In this case an object with two keys is returned: "indexNames" holds the
name of the key index and "values" is an array of all rows which are represented as JSON objects:

{
"indexNames" : ["key", "innerkey"],
"values" : [
{ "key" : "mykey1", "innerkey" : { "name" : "a", "number" : 4711 }, "item" : "value1", },
{ "key" : "mykey2", "innerkey" : { "name" : "b", "number" : 815 }, "item" : "value2", },
...

]
}

Beside this special behaviour for TabularData, serialization can be influenced by certain processing
parameters given with the request (see Section 6.3, “Processing parameters”). I.e. the recursive

Jolokia Protocol

Jolokia (1.7.0) 62

http://download.oracle.com/javase/6/docs/api/javax/management/MXBean.html

6 Conversion from a typed system to an untyped representation is obviously much easier than vice versa. Please note, that
Jolokia does not replace a full blown JSON object serialization framework like Jackson. Nor does it use one in order to keep
the agent small and simple with a low dependency count.

process of JSON serialization can be stopped when the data set gets too large. Self and other
circular references are detected, too. If this happen, special values indicate the truncation of the
generated JSON object.

[this]

This label is used when a property contains a self reference

[Depth limit]

When a depth limit is used or the hard depth limit is exceeded, this label contains a string
representation of the next object one level deeper. (see Section 6.3, “Processing parameters”,
parameter maxDepth)

[Reference]

If during the traversal an object is visited a second time, this label is used in order to break the
cycle.

[Object limit exceeded]

The total limit of object has been exceeded and hence the object are not deserialized further.
(see Section 6.3, “Processing parameters”, parameters maxCollectionSize and maxObjects)

6.4.2. Request parameter serialization

Serialization in the upstream direction (i.e. when sending values for write operations or arguments
for exec operations) differs from from the object serializaton as used as response values which is
described in Section 6.4.1, “Response value serialization”. Not all types are supported for upstream
serialization 6 and the capabilities differ also for POST and GET requests. GET upstream serialization
is limited to basic types and simple arrays. POST requests on the other support a much large set of
types, including the serialization of Maps, Lists and all Open Types.

6.4.2.1. GET request values

Since parameters get encoded in the URL for GET request, only the following types can used for
values and arguments in write and exec requests:

• String

• Integer / int

• Long / long

• Byte / byte

• Short / short

• Float / float

• Double / double

• BigDecimal / BigInteger

Jolokia Protocol

Jolokia (1.7.0) 63

http://download.oracle.com/javase/6/docs/api/javax/management/openmbean/OpenType.html

• char

• Boolean / boolean

• Date

• URL

• Enums (whose type is accessible to the agent, see below)

• Any type, that is accessible to the agent, and has a public constructor with one String parameter

The serialized value is simply the string representation of those types. Dates can be set either by an
long value (epoch milliseconds) or with a string value (ISO-8601 format). Arrays of the given types
are serialized as a comma separated list.

Note
The array support is somewhat limited since it makes a native split on commas. It does
not yet take into account any quoting or escaping. For a much safer way to transport
arrays to the agent, please consider using POST requests.

Certain tag values are used to mark special values. A null value has to be serialized as [null], an
empty String as "". Tag values are not required for POST requests.

6.4.2.2. POST request values

POST request take advantage of the JSON type of the value transfered. These are basic types for
numbers (42 or 23.5), booleans (true or false) and strings ("habanero"). Also, JSON knows about
null values so no special 'tags' like for GET requests are not required. Since JSON supports
intrinsically key-value maps and array types, these can be used directly, too. I.e. if the JMX operation
to execute takes a Map argument, the argument can be given as a JSON object. Be aware, however,
that JSON maps (objects) only support strings as keys.

The agent knows how to convert an JSON array to Java Arrays (of a basic type) or Lists, depending
on the requirement as dictated by the MBeans operation or attribute signature. Numbers in JSON are
always transfered as long or double values and are as well tried to fit to the MBean's signature. In
case of an overflow (e.g. when trying to treat a long with a too large value as int), an exception is
raised.

Enums can be converted from their canonical name. The prerequisite for this is, that the Jolokia
agent has access to the Enum's class. This is true for all Enums shipped with the JDK (like TimeUnit).
Custom enums can not be used for upstream serialization by default since the Jolokia Agent is not
able to contruct an instance of it because of missing type information.

Upstream serialization also supports OpenTypes. If the signature of JMX exec operation or the value
type of a JMX attribute is a OpenType, they are serialized as follows:

• SimpleTypes are extracted from their corresponding JSON type.

• ArrayType is extracted from a JSONArray where the elements are serialized recursively with this
algorithms. Only ArrayTypes with element type CompositeType or SimpleType are supported.

Jolokia Protocol

Jolokia (1.7.0) 64

http://download.oracle.com/javase/6/docs/api/javax/management/openmbean/OpenType.html

• CompositeType is extracted recursively from a JSONObject where there the string keys must fit to the
CompositeType's item names and the values must be serializable as open types.

• TabularType is converted from JSONObject. If it is single index (i.e. has only one single index name),
the JSONObject must have the index values as string keys and the map values are other
JSONObjects representing the row data. For TabularTypes with more than one index name, the
incoming JSONObjecct must be a nested object with each index as an additional layer. E.g. the
following JSON object works for a TabularType with the two index names lastname and firstname,
which are both of type SimpleType.STRING:

{
"Mann": {

"Thomas": {
"lastname": "Mann",
"firstname": "Thomas",
"birth": 1875

},
"Heinrich": {

"lastname": "Mann",
"firstname": "Heinrich",
"birth": 1871
}

}
}

TabularType used by the MXBean framework for serialization of Maps are translated directly from
maps. More details are explained in the next section Section 6.4.3, “Jolokia and MXBeans”.

TabularTypes with index values which are not of type SimpleType can be used, too. However, in this
case this simple nested map structure is not enough, since keys of complex types (e.g.
CompositeData types) can not be represented as JSON map keys. Instead, a generic representation
for TabularTypes must be used. A JSON object with two keys: indexNames with an array of the index
names and values with an array of rows containing objects which include the index values plus any
other values of the rows' CompositeType. E.g. if in the example above, the index would have been
an User with first- and lastname, the JSON structure for setting the TabularData should look like

{
"indexNames": ["user"],
"values" : [

{ "user" : { "lastname": "Mann", "firstname": "Thomas" }, "birth": 1875 },
{ "user" : { "lastname": "Mann", "firstname": "Heinrich" }, "birth": 1871 }

]
}

6.4.3. Jolokia and MXBeans

The MXBean Framework is availale in the JRE since version 6 and allows for easy creation and
registration of own MBeans. MXBeans are some what the successor for standard MBeans and
support an annotation driven as well as a naming convention driven programming model. The most
important difference to standard MBeans it the restriction of MXBean to reference only open types.

Although to the outside only open types are exposed by the MXBean framework, MXBean
themselves can use more complex data types. The framework will translate forth and back between

Jolokia Protocol

Jolokia (1.7.0) 65

http://download.oracle.com/javase/6/docs/api/javax/management/MXBean.html

the custom and open types according to certain rules as declared in the MXBean specification. Most
of the translations to open types fits naturally to Jolokia's serialization, except for the translation of
Map.

When an MXBean references a map, the MXBean framework translates this map into a TabularData

with a fixed internal structure, i.e. with an index key and rows with keys key and value. This leads
directly to a JSON representation which is quite artificial. E.g a map with two keys kind and hotness

will be converted by the MXBean framework to a TabularData object which in turn would be
translated by Jolokia to the following JSON struture

{
"kind" : {

"key": "kind",
"value": "Habanero"

},
"hotness" : {

"key": "hotness",
"value": 10

}
}

Since this representation of a simple map is unnecessarily complicated, Jolokia treats TabularData of
this kind (i.e. one index key and rows with properties key and value) specially in order to translate it
back (and forth) to

{
"kind" : "Habanero",
"hotness" : 10

}

6.5. Tracking historical values

The Jolokia agents are able to keep requested values in memory along with a timestamp. If history
tracking is switched on, then the agent will put the list of historical values specific for this request into
the response. History tracking is toggled by an MBean operation on a Jolokia-owned MBean (see
Chapter 7, Jolokia MBeans). This has to be done individually for each attribute or JMX operation to
be tracked.

A history entry is contained in every response for which history tracking was switched on. A certain
JMX operation on an Jolokia specific MBean has to be executed to turn history tracking on for a
specific attribute or operation. See Chapter 7, Jolokia MBeans for details.The history property of the
JSON response contains an array of json objects which have two attributes: value containing the
historical value (which can be as complex as any other value) and timestamp indicating the time when
this value was current (as measured by the server). Example 6.2, “JSON Response” has an example
of a response containing historical values.

For multi attribute read requests, the history entry in the response is a JSON object instead of an
array, where this object's attributes are the request's attribute names and the values are the history
arrays as described above.

Jolokia Protocol

Jolokia (1.7.0) 66

http://download.oracle.com/javase/6/docs/api/javax/management/MXBean.html

6.6. Proxy requests

For proxy requests, POST must be used as HTTP method so that the given JSON request can
contain an extra section for the target which should be finally reached via this proxy request. A typical
proxy request looks like

{
"type" : "read",
"mbean" : "java.lang:type=Memory",
"attribute" : "HeapMemoryUsage",
"target" : {

"url" : "service:jmx:rmi:///jndi/rmi://targethost:9999/jmxrmi",
"user" : "jolokia",
"password" : "s!cr!t"

}
}

url within the target section is a JSR-160 service URL for the target server reachable from within the
proxy agent. user and password are optional credentials used for the JSR-160 communication.

6.7. Agent Discovery

Jolokia agents are able to respond to certain multicast requests in order to allow clients to detect
automatically connection parameters. The agent URL to expose can be either manually configured
for an agent or an agent can try to detect its URL automatically. This works fine for the JVM agent,
for the WAR agent it only works after the first HTTP request has been processed by the agent. Due
to limitations of the Servlet API the agent servlet has no clue about its own URL until this first
request, which contains the request URL. Of course, the URL obtained that way can be bogus as
well, since the agent might hide behind a proxy, too. So, if in doubt you should configure the agent
URL from outside to allow external clients to be discovered. The configuration options for enabling
multicast requests are described in the Table 3.6, “JVM agent configuration options” and Table 3.1,
“Servlet init parameters” agent configuration sections.

A agent which is enabled for multicast discovery will only respond to a multicast request if the
Section 4.1, “Policy based security” allows connections from the source IP. Otherwise a multicast
request will be simply ignored. For example, if you have configured your agent to only allow request
from a central monitoring host, only this host is able to detect these agents. Beside security aspects it
wouldn't make sense to expose the URL as any other host is not able to connect anyways.

Starting with version 1.2.0 the Jolokia JVM agent has this discovery feature enabled by default which
can be switched off via --discoveryEnabled=true command line parameter or the corresponding
configuration option. For the WAR agent and OSGi agents this feature is switched off by default since
auto detection doesn't work always. It can be enabled with the init parameter discoveryEnabled (in
which case the auto discovery described above is enabled) or better with discoveryAgentUrl with the
URL. Alternatively, a system property can be used with a jolokia. prefix (e.g.
jolokia.discoveryEnabled). More on the configuration options can be found in the agent's
configuration sections.

For sending a multicast request discovery message, an UDP message should be send to the
address 239.192.48.84, port 24884 which contains a JSON message encoded in UTF-8 with the

Jolokia Protocol

Jolokia (1.7.0) 67

following format

{
"type": "query"

}

Any agent enabled for discovery will respond to requester on the same socket with an answer which
looks like

{
"type": "response",
"agent_description" : "Atlantis Tomcat",
"agent_id" : "10.9.11.18-58613-81b087d-servlet",
"url": "http://10.9.11.25:8778/jolokia",
"server_vendor" : "Apache",
"server_product" : "Tomcat",
"server_version" : "7.0.35"

}

The response itself is a JSON object and is restricted to 8192 bytes maximum. The request type is
either query or response. A query request is sent via multicast by any interested client and each agent
responds with a response of type response. Query requests contain only the type as property.
Responses are sent back to the address and port of the sender of the query request.

Please note, that IPv6 is currently not supported yet but likely in the future.

Table 6.10. Response properties

Property Description Example

type Request type, either query or
response.

query or response

agent_id Each agent has a unique id
which can be either provided
during startup of the agent in
form of a configuration
parameter or being
autodetected. If autodected, the
id has several parts: The IP, the
process id, hashcode of the
agent and its type. This field will
be always provided.

10.9.11.87-23455-9184ef-osgi

agent_description An optional description which
can be used as a UI label if
given.

ServiceMix ESB

url The URL how this agent can be
contacted. This URL is typically
autodetected. For the JVM
agent it should be highly
accurate. For the servlet based

http://10.9.11.87:8080/jolokia

Jolokia Protocol

Jolokia (1.7.0) 68

Property Description Example

agents, it depends. If
configured via an initialisation
parameter this URL is used. If
autodetected it is taken from
the first HTTP request
processed by the servlet.
Hence no URL is available until
this first request was
processed. This property might
be empty.

secured Whether the agent was
configured for authentication or
not.

false

server_vendor The vendor of the container the
agent is running in. This field is
included if it could be
automatically detected.

Apache

server_product The container product if
detected

tomcat

server_version The container's version (if
detected)

7.0.50

6.8. Jolokia protocol versions

The protocol definition is versioned. It contains of a major and minor version. Changes in the minor
version are backward compatible to other protocol with the same major version. Major version
changes incorporate possibly backwards incompatible changes. This document describes the Jolokia
protocol version 7.2.

7.2 (since 1.2.2)
Pathes can now be used with wildcards (*) which match everything in the selected level. They are
especially useful with pattern read requests.

7.1 (since 1.2.0)
The version command returns now the configuration global information as well with the key
config in the returned value.

7.0 (since 1.1.0)
The maxDepth parameter (either as processing parameter or as configuration value) is now 1
based. I.e. 0 means always "no limit" (be careful with this, though), 1 implies truncating the value
on the first level for READ request. This was already true for LIST requests and the other limit
values (maxCollectionSize and maxObjects) so this change is used in order to harmonize the
overall behaviour with regard to limits.
Enums are now serialized downstream (full support) and upstream (for type accessible to the
agent).

Jolokia Protocol

Jolokia (1.7.0) 69

New query parameter options serializeException (for setting an error_value in case of an
exception), canonicalNaming (influences how object names are returned) and includeStackTrace

(for adding or omitting stacktraces in error responses).

6.1 (since 1.0.2)
Error responses contain now the original request as well, for single and bulk requests.

6.0 (since 1.0.0)
Escaping has been changed from /-/ to !/. This affects GET Urls and inner paths.

5.0 (since 0.95)
javax.management.openmbean.TabularData is serialized differently when generating the response.
In fact, the serialization as an array in the former versions of this protocol is not correct, since
TabularData in fact is a hash and not a list. It is now generated as map (or multiple maps),
depending on the declared index. Also, access via path is now an access via key, not a list index.
For the special case of MXBean map serialization, where the returned TabularData has a fixed
format (i.e. with key and value columns), the TabularData is transformed to an appropriate map..
Removed JSON property modified from the serialized JSON representation of a File return value
since it duplicated the lastModified property on the same object.

4.3 (since 0.91)
The list operation supports a maxDepth option for truncating the answer.

4.2 (since 0.90)
Response values are returned in the native JSON datatype, not always as strings as in previous
versions of this protocol. Parameter serialization for writing attribute values or for arguments in
exec operations has been enhanced for POST requests, which are now represented as native
JSON types and not in a string representation as before. GET requests still use a simplified string
representation.

4.0 (17.10.2010)
This is the initial version for Jolokia. Versions below 4 are implemented by jmx4perl

Jolokia Protocol

Jolokia (1.7.0) 70

Chapter 7. Jolokia MBeans
Besides bridging JMX to the HTTP/JSON world, the Jolokia agents also install their own MBeans
which provide the extra services described in this chapter.

7.1. Configuration MBean

This MBean, which is registered under the name jolokia:type=Config, allows changing configuration
parameters. Changes are non-persistent and get lost after a restart of the hosting application server.
Debugging mode and the history store can be configured with this MBean.

7.1.1. Debugging

Debugging can be switched on by setting the attribute Debug. When debugging is switched on, the
Jolokia agent will store debug information in a ring buffer in memory, whose size can be tuned with
the attribute MaxDebugEntries. The debug information can be fetched by the operation debugInfo. This
debugging output will contain the JSON responses (which in turn contain their requests) sent to the
client. Finally, the operation resetDebugInfo clears the debug history.

7.1.2. History store

The history store can be used to remember attribute and return values within the agent's memory.
The Nagios check check_jmx4perl, for instance, uses this feature for its delta check, which
measures changes in attribute values. In order to switch on history tracking, two operations are
provided:

setHistoryLimitForOperation
JMX operation for switching on tracking of the execution of JMX operations. It takes five
arguments: The MBean and operation name, an optional target URL when the agent is used in
proxy mode and as limit the number of maximal entries to track and a duration in seconds. If the
target URL is given, then request for this specific target are tracked, otherwise, if the URL is null,
requests to this operation on the local agent are tracked. The return value of calling this
operations is stored in a buffer with the specified length, where the oldest elements will be shifted
out in case of an overflow.

setHistoryLimitForAttribute
JMX operation for switching on tracking of an JMX attribute's value. It takes six arguments: The
MBean and attribute name, an optional path and target URL and as limit the maximal number of
entries to remember and/or an maximum duration for the elements to keep in the history. As
above, the target URL is only used for proxy requests. The path can be used to store only read
requests with the given path.

There are two kinds of limits which can be applied: Either by a maximum number of historical values
to remember or a maximum duration for the values to keep. If both limits are given in a configuration
call on the MBean above, both limits are applied. In any case, there are never more values
remembered than the global limit which can be set and retrieved with attribute HistoryMaxEntries.

The History store can be emptied with a call to the operation resetHistoryEntries. This also switches
off all history tracking.

Jolokia (1.7.0) 71

If for a request history tracking is switched on, the JSON response will contain an extra field history

which contains a list with historical values along with the timestamp when it was recorded. This
format is described in detail in Section 6.5, “Tracking historical values”.

7.2. Server Handler

The MBean jolokia:type=ServerHandler has a single operation mBeanServersInfo with no
arguments. This operation can be used to dump out the name of all registered MBeans on all found
MBeanServers. It is helpful to get a quick and condensed overview of the available JMX information.

7.3. Discovery MBean

The MBean jolokia:type=Discovery can be used to detect other MBeans by sending multicast
discovery UDP requests. Every agent which has discovery enabled will respond with information
about the agent itself and the access URL. The MBean itself ha two operations: lookupAgents and
lookupAgentsWithTimeout which either use a default timeout of one second for waiting for response
packet or with a user provided timeout given as argument to this operation. Both methods return an
JSON array which contains JSON objects, one for each agent discovered.

A return value of these operation could look like:

[
{

"agent_id" : "10.9.11.25-58613-81b087d-servlet",
"url": "http://10.9.11.25:8778/jolokia",
"secured": false,
"server_vendor" : "Apache",
"server_product" : "Tomcat",
"server_version" : "7.0.35"

},
{

"agent_id" : "10.9.11.87-23455-9184ef-osgi",
"agent_description": "My OSGi container",
"url": "http://10.9.11.87:8080/jolokia",
"secured": true,
"server_vendor" : "Apache",
"server_product" : "Felix",
"server_version" : "4.2.1"

}
]

Table 7.1. Response properties

Property Description Example

agent_id Each agent has a unique id
which can be either provided
during startup of the agent in
form of a configuration
parameter or being
autodetected. If autodected, the

10.9.11.87-23455-9184ef-osgi

Jolokia MBeans

Jolokia (1.7.0) 72

Property Description Example

id has several parts: The IP, the
process id, hashcode of the
agent and its type. This field will
be always provided.

agent_description An optional description which
can be used as a UI label if
given.

ServiceMix ESB

url The URL how this agent can be
contacted. This URL is typically
autodetected. For the JVM
agent it should be highly
accurate. For the servlet based
agents, it depends. If
configured via an initialisation
parameter this URL is used. If
autodetected it is taken from
the first HTTP request
processed by the servlet.
Hence no URL is available until
this first request was
processed. This property might
be empty.

http://10.9.11.87:8080/jolokia

secured Whether the agent was
configured for authentication or
not.

false

server_vendor The vendor of the container the
agent is running in. This field is
included if it could be
automatically detected.

Apache

server_product The container product if
detected

tomcat

server_version The container's version (if
detected)

7.0.50

Jolokia MBeans

Jolokia (1.7.0) 73

Chapter 8. Clients
Three client implementations exists for Jolokia: Jmx4Perl, the Perl binding (the grandmother of all
clients ;-), a Java library and a Javascript library. This reference describes the client bindings bundled
with Jolokia. More JVM based client libraries are planned for inclusiong in Jolokia (e.g. Groovy, Scala
or JRuby). Information about Jmx4Perl can be found ???.

8.1. Javascript Client Library

The Jolokia Javascript library provides a Javascript API to the to the Jolokia agent. It comes with two
layers, a basic one which allows for sending Jolokia requests to the agent synchronously or
asynchronously and one with a simplified API which is less powerful but easier to use. This library
supports bulk requests, HTTP GET and POST requests and JSONP for querying agents which are
located on a different server.

All methods of this library are available via the Jolokia client object, which needs to be instantiated
up-front. In the following example a client object is created and the used heap memory is requested
synchronously via the simple API. The agent is deployed within the same webarchive which also
serves this script.

var j4p = new Jolokia("/jolokia");
var value = j4p.getAttribute("java.lang:type=Memory","HeapMemoryUsage","used");
console.log("Heap Memory used: " + value);

8.1.1. Installation

The Jolokia Javascript library is distributed in two parts, in compressed and uncompressed forms:

jolokia.js and jolokia-min.js

Base library containing the Jolokia object definition which carries the request()

jolokia-simple.js and jolokia-simple-min.js

Library containing the Jolokia simple API and which builds up on jolokia.js It must be included
after jolokia.js since it adds methods to the Jolokia object definition.

All four files can be obtained from the download page. For production environments the compressed
version is highly recommended since the extensive API documentation included in the original
version is stripped off here. For Maven users there is an even better way to integrate them, described
in Section 8.1.6, “Maven integration”.

jolokia.js uses jQuery, which must be included as well. If the target platform doesn't support native
JSON serialization, json2.js needs to be included as well. As sample HTML head for including all
necessary parts looks like:

<head>
<script src="jquery-1.7.2.js"></script>
<script src="json2.js"></script>
<script src="jolokia-min.js"></script>

Jolokia (1.7.0) 74

/download.html
http://www.jquery.com
https://github.com/douglascrockford/JSON-js

<script src="jolokia-simple-min.js"></script>
</head>

A Jolokia client is always created as an instance of Jolokia. Requests to the agent are sent by calling
methods on this object. The constructing function takes a plain object, which provides default
parameters which are used in the request() if no overriding are given there.

8.1.2. Usage

All function of this library are available as methods of the Jolokia object. The options needs to be
instantiated as usual and takes a set of default options, which can be overwritten by subsequent
requests. On the most basic layer is a single request() method, which takes two arguments: A
request object and an optional options object. For example, a synchronous request for obtaining the
agent's version for a agent running on the same server which delivered the Javascript looks like:

var j4p = new Jolokia({url: "/jolokia"});
var response = j4p.request({type: "version"},{method: "post"});
console.log("Agent Version: " + response.value.agent);

If the constructor is used with a single string argument, this value is considered to be the agent's
access URL. I.e. in the example above the construction of the Jolokia could have been performed
with a single string argument (new Jolokia("/jolokia")).

8.1.2.1. Requests

Jolokia requests and responses are represented as JSON objects. They have exactly the same
format, which is expected and returned by the agent as defined in Chapter 6, Jolokia Protocol for
POST requests. All request types are supported.

The request() expects as its first argument either a single request object or, for bulk requests, an
array of request objects. Depending on this for synchronous operations either a single response
JSON object is returned or an array of responses (in the order of the initial request array). For
asynchronous request one or more callbacks are called for each response separately. See
Section 8.1.2.3, “Operational modes” for details.

The following example shows a single and bulk request call to the Jolokia agent:

var j4p = new Jolokia({url: "/jolokia"});
var req1 = { type: "read", mbean: "java.lang:type=Memory", attribute: "HeapMemoryUsage" };
var req2 = { type: "list" };
var response = j4p.request(req1);
var responses = j4p.request([req1, req2]);

8.1.2.2. Request options

Each request can be influenced by a set of optional options provided either as default during
construction of the Jolokia object or as optional last parameter for the request object. Also a request
can carry a config attribute, which can be used for all processing parameters (Section 6.3,

Clients

Jolokia (1.7.0) 75

“Processing parameters”). The known options are summarized in Table 8.1, “Request options”

Table 8.1. Request options

Key Description

url Agent URL (mandatory)

method Either "post" or "get" depending on the desired
HTTP method (case does not matter). Please
note, that bulk requests are not possible with
"get". On the other hand, JSONP requests are
not possible with "post" (which obviously implies
that bulk request cannot be used with JSONP
requests). Also, when using a read type request
for multiple attributes, this also can only be sent
as "post" requests. If not given, a HTTP method
is determined dyamically. If a method is selected
which doesn't fit to the request, an error is
raised.

jsonp Whether the request should be sent via JSONP
(a technique for allowing cross domain request
circumventing the infamous
"same-origin-policy"). This can be used only with
HTTP "get" requests.

success Callback function which is called for a successful
request. The callback receives the response as
single argument. If no success callback is given,
then the request is performed synchronously and
gives back the response as return value. The
value can be an array of functions which is used
for bulk requests to dispatch multiple responses
to multiple callbacks. See Section 8.1.2.3,
“Operational modes” for details.

error Callback in case a Jolokia error occurs. A
Jolokia error is one, in which the HTTP request
suceeded with a status code of 200, but the
response object contains a status other than OK
(200) which happens if the request JMX
operation fails. This callback receives the full
Jolokia response object (with a key error set). If
no error callback is given, but an asynchronous
operation is performed, the error response is
printed to the Javascript console by default.

ajaxError Global error callback called when the Ajax
request itself failed. It obtains the same
arguments as the error callback given for
jQuery.ajax(), i.e. the XmlHttpResonse, a text
status and an error thrown. Refer to the jQuery
documentation for more information about this

Clients

Jolokia (1.7.0) 76

Key Description

error handler.

username A username used for HTTP authentication

password A password used for HTTP authentication

timeout Timeout for the HTTP request

maxDepth Maximum traversal depth for serialization of
complex return values

canonicalProperties Defaults to true for canonical (sorted) property
lists on object names; if set to "false" then they
are turned in their unsorted format.

maxCollectionSize Maximum size of collections returned during
serialization. If larger, the collection is returned
truncated.

maxObjects Maximum number of objects contained in the
response.

ignoreErrors If set to true, errors during JMX operations and
JSON serialization are ignored. Otherwise if a
single deserialization fails, the whole request
returns with an error. This works only for certain
operations like pattern reads.

serializeException If true then in case of an error, the exception
itself is returned in it JSON representation under
the key error_value in the response object.

includeStackTrace By default, a stacktrace is returned with every
error (key: stacktrace) This can be ommitted by
setting the value of this option to false.

ifModifiedSince The LIST operations provides an optimization in
that it remembers, when the set of registered
MBeans has been changes last. If a timestamp
(in epoch seconds) is provided with this
parameter, then the LIST operation returns an
empty response (i.e. value is null) and a status

code of 304 (Not Modified) if the MBeans haven't
changed. If you use the request scheduler
(Table 8.1, “Request options”) then this feature
can be used to get the callbacks called only if a
value is returned. For the normal request, the
error callback is called which must check the
status itself.

8.1.2.3. Operational modes

Requests can be send either synchronously or asynchronously via Ajax. If a success callback is given
in the request options, the request is performed asynchronously via an Ajax HTTP request. The

Clients

Jolokia (1.7.0) 77

callback gets these arguments: a Jolokia JSON response object (see Section 6.1, “Requests and
Responses”) and an integer index indicating for which response this callback is being called. For bulk
requests, this index corresponds to the array index of the request which lead to this response. The
value of this option can be an array of callback functions which are called in a round robin fashion
when multiple responses are received in case of bulk requests. These callbacks are called only when
the returned Jolokia response has a status code of 200, otherwise the callback(s) given with the error

option are consulted. If no error callback is given, the error is printed on the console by default. As for
success callbacks, error callbacks reveive the Jolokia error response as a JSON object.

The following example shows asynchronous requests for a single Jolokia request as well as for bulk
request with multiple callbacks.

var j4p = new Jolokia("/jolokia");

// Single request with a single success callback
j4p.request(

{ type: "read", mbean: "java.lang:type=Memory", attribute: "HeapMemoryUsage"},
{ success: function(response) {

if (response.value.used / response.value.max > 0.9) {
alert("90% of heap memory exceeded");

}
},
error: function(response) {

alert("Jolokia request failed: " + response.error);
}

}
);

// Bulk request with multiple callbacks
j4p.request(

[
{ type: "read", mbean: "java.lang:type=Threading", attribute: "ThreadCount"},
{ type: "read", mbean: "java.lang:type=Runtime", attribute: ["VmName", "VmVendor"]}

],
{ success: [

function(response) {
console.log("Number of threads: " + response.value);

},
function(response) {

console.log("JVM: " + response.value.VmName + " -- "
+ response.value.VmVendor);

}
],

error: function(response) {
alert("Jolokia request failed: " + response.error);

}
}

);

Both callbacks, success and error, are only called when the Ajax request succeeds. In case of an
error on the HTTP level, the callback ajaxError is called with the XMLHttpRequest, a textStatus and
an optional exception object. It has the same signature as the underlying error callback of the
jQuery.ajax() call. (See the jQuery documentation for details).

The Jolokia agent also supports JSONP requests for cases where the Jolokia agent is served on a
different server or port than the Javascript client. By default, such access is forbidden by the so
called same-origin-policy. To swith on JSONP, the option jsonp should be set to "true".

Clients

Jolokia (1.7.0) 78

http://api.jquery.com/jQuery.ajax/
http://en.wikipedia.org/wiki/JSONP

As explained in Section 6.1, “Requests and Responses” the Jolokia agent supports two HTTP
methods, GET and POST. POST is more powerful since it supports more features. e.g. bulk requests and
JMX proxy requests are only possible with POST. By default, the Jolokia Javascript library selects an
HTTP method automatically, which is GET for simple cases and POST for more sophisticated requests.
The HTTP method can be overridden by setting the option method to "get" or "post".

There are some limitations in choosing the HTTP method depending on the request and other
options given:

• Bulk requests (i.e. an array of multiple requests) can only be used with POST.

• READ requests for multiple attributes (i.e. the attribute request parameter is an array of string
values) can only be used with POST.

• The JMX proxy mode (see Chapter 5, Proxy Mode) can only be used with POST.

• JSONP can only be used with GET and only in asynchronous mode (i.e. a success callback must be
given). This is a limitation of the JSONP technique itself.

The restrictions above imply, that JSONP can only be used for single, simple requests and not for
JMX proxy calls.

8.1.3. Simple API

Building upon the basic Jolokia.request() method, a simplified access API is available. It is
contained in jolokia-simple.js which must be included after jolokia.js. This API provides
dedicated method for the various request types and supports all options as described in Table 8.1,
“Request options”. There is one notable difference for asynchronous callbacks and synchronous
return values though: In case of a successful call, the callback is fed with the response's value object,
not the full response (i.e. response.value). Similar, for synchronous operations the value itself is
returned. In case of an error, either an error callback is called with the full response object or an
Error is thrown for synchronous operations.

getAttribute(mbean,attribute,path,opts)
This method returns the value of an JMX attribute attribute of an MBean mbean. A path can be
optionally given, and the optional request options are given as last argument(s). The return value
for synchronous operations are the attribute's value, for asynchronous operations (i.e.
opts.success != null) it is null. See Section 6.2.1, “Reading attributes (read)” for details.

For example, the following method call can be used to synchronously fetch the current heap
memory usage:

var memoryUsed = j4p.getAttribute("java.lang:type=Memory","HeapMemoryUsage","used");

setAttribute(mbean,attribute,value,path,opts)
For setting an JMX attribute, this method takes the MBean's name mbean, the attribute attribute

and the value to set as value. The optional path is the inner path of the attribute on which to set
the value (see Section 6.2.2, “Writing attributes (write)” for details). The old value of the attribute
is returned or given to a success callback.

Clients

Jolokia (1.7.0) 79

To enable verbose mode in the memory-handling beans, use

var gsLoggingWasOn = j4p.setAttribute("java.lang:type=Memory","Verbose",true);

execute(mbean,operation,arg1,arg2,...,opts)
With this method, a JMX operation can be executed on the MBean mbean. Beside the operation's
name operation, one or more arguments can be given depending on the signature of the JMX
operation. The return value is the return value of the operation. See Section 6.2.3, “Executing
JMX operations (exec)” for details.

The following exampled asynchronously fetches a thread dump as a JSON object and logs it into
the console:

j4p.execute("java.lang:type=Threading","dumpAllThreads",true,true,
{

success: function(value) {
console.log(JSON.stringify(value));

}
});

search(mBeanPattern,opts)
Searches for one or more MBeans whose object names fit the pattern mBeanPattern. The return
value is a list of strings with the matching MBean names or null if none is found. See
Section 6.2.4, “Searching MBeans (search)” for details.

The following example looks up all application servers available in all domains:

var appServerNames = j4p.search("*:j2eeType=J2EEServer,*");

list(path,opts)
For getting meta information about registered MBeans, the list command can be used. The
optional path points into this meta information for retrieving partial information. The format of the
return value is described in detail in Section 6.2.5, “Listing MBeans (list)”.

This example fetches only the meta information for the attributes of the
java.lang:type=OperatingSystem MBean:

var attributesMeta = j4p.list("java.lang/type=OperatingSystem/attr");

version(opts)
The version method returns the agent's version, the protocol version, and possibly some
additional server-specific information. See Section 6.2.6, “Getting the agent version (version)” for
more information about this method.

A sample return value for a Glassfish server looks like:

{

Clients

Jolokia (1.7.0) 80

protocol: "4.0",
agent: "0.82",
info: {

product: "glassfish",
vendor": "Sun",
extraInfo: {

amxBooted: false
}

}

8.1.4. Request scheduler

A Jolokia object can be also used for periodically sending requests to the agent. Therefore requests
can be registered to the client object, and a poller can be started and stopped. All registered requests
are send at once with a single bulk request so this is a quite efficient method for periodically polling
multiple values.

Here is a simple example, which queries the heap memory usage every 10 seconds and prints out
the used memory on the console:

var j4p = new Jolokia("/jolokia")
handle = j4p.register(function(resp) {

console.log("HeapMemory used: " + resp.value);
},
{ type: "READ", mbean: "java.lang:type=Memory", attribute: "HeapMemoryUsage", path: "used"});

j4p.start(10000);

handle = j4p.register(callback,request,request,....)
This method registers one or more request for being periodically fetched. callback can be either a
function or an object.

If a function is given or an object with an attribute callback holding a function, then this function is
called with all responses received as argument, regardless whether the individual response
indicates a success or error state.

If the first argument is an object with two callback attributes success and error, these functions
are called for each response separately, depending whether the response indicates success or
an error state. If multiple requests have been registered along with this callback object, the
callback is called multiple times, one for each request in the same order as the request are given.
As second argument, the handle which is returned by this method is given and as third argument
the index within the list of requests.

If the first argument is an object, an additional config attribute with processing parameters can be
given which is used as default for the registered requests. Requests with a config section take
precedence.

Furthermore, if a onlyIfModified: true exists in the callback object, then the sucess and error

callbacks are called only if the result changed on the server side. Currently, this is supported for
the list operation only in which case the callback is only called when MBean has been
registered or deregistered since the last call of the scheduler. If a single callback function is used

Clients

Jolokia (1.7.0) 81

which gets all responses for a job at once, then this function is called only with the responses,
which carry a value. If none of the registered requests produced a response with value (i.e. the
server decided that there was no update for any request), then a call to the callback function is
skipped competely.

register() returns a handle which can be used later for unregistering these requests.

In the following example two requests are registered along with a single callback function, which
takes two responses as arguments:

handle = j4p.register(function(resp1,resp2) {
console.log("HeapMemory used: " + resp1.value);
console.log("ThreadCount: " + resp2.value);

},
{ type: "READ", mbean: "java.lang:type=Memory", attribute: "HeapMemoryUsage", path: "used"},
{ type: "READ", mbean: "java.lang:type=Threading", attribute: "ThreadCount"});

In the next example, a dedicated success and error callback are provided, which are called
individually for each request (in the given order):

j4p.register(
{
success: function(resp) {

console.log("MBean :" + resp.mbean + ", attr: " + resp.attribute + ", value: " + resp.value);
},
error: function(resp) {

console.log("Error: " + resp.error_text);
},
config: {

serializeException: true
},
onlyIfModified: true

},
{ type: "LIST", config: { maxDepth: 2}},
{ type: "READ", mbean: "java.lang:type=Threading",
attribute: "ThreadCount", config: { ignoreErrors: true }},

{ type: "READ", mbean: "bla.blu:type=foo", attribute: "blubber"});

j4p.unregister(handle)
Unregister one or more requests registered with handle so that they are no longer polled with the
scheduler.

j4p.jobs()
Return an array of handles for all registered jobs. This array can be freely manipulated, its a copy
of the handle list.

j4p.start(period)
Startup the scheduler for requeting the agent every period milliseconds. If the scheduler is
already running, it adapts its scheduling period according to the given argument. If no period is
given, the period provided during construction time (with the option fetchInterval) is used. The

Clients

Jolokia (1.7.0) 82

default value is 30 seconds.

j4p.stop()
Stop the scheduler. If the scheduler is not running, nothing happens. The scheduler can be
restarted after it has been stopped.

j4p.isRunning()
Checks whether the scheduler is running. Returns true if this is the case, false otherwise.

8.1.5. Jolokia as a Cubism Source

Cubism is a Javascript library for plotting time-series data and is based on d3.js. Jolokia comes with
a plugin for Cubism and can act as a data source. The usage is quite simple: After creating a Jolokia
Cubism source, one or more JSON request can be registered, which are queried periodically. No
matter how many requests are registered, only a single HTTP request is sent to the server after each
period. Cubism is then responsible for plotting the data.

Figure 8.1, “Horizon Chart for Heap-Memory Usage” shows a sample for a memory plot. More
examples can be found on this page.

Figure 8.1. Horizon Chart for Heap-Memory Usage

jolokia-cubism.js can be downloaded from the downlad page and also comes with a minified
version. As dependencies it requires jolokia.js, JQuery, Cubism and d3.js. jolokia-cubism.js

registers itself as an AMD module if running within an AMD environment.

In order to use Jolokia with Cubism, you first need to create a Cubism context. Next use
context.jolokia() for creating a connection to the Jolokia agent.

var context = cubism.context();

// Create a source for Jolokia metrics pointing to the agent
// at 'http://jolokia.org/jolokia'
var jolokia = context.jolokia("http://jolokia.org/jolokia");

The method context.jolokia() can take various kind of arguments:

• A single string as in the example above is used as the agent's URL. Additionally, options as
key-value pairs can be given as an additional argument. The possible keys are described in
Table 8.1, “Request options”. If the URL is omitted, but only an option object is provided, then this
object must also contain a key url for specifying the agent URL.

• Alternatively, an already instantiated Jolokia object can be provided as single argument, which
then is used for all communications to the server.

From this source object, a metric object can be easily created. This metric object embrasses one or
more Jolokia requests which are send to the server periodically. The response(s) are then used for
calculating a single numerical value which gets plotted. For example:

// Read periodically the Heap-Memory use and take 'HeapMemory Usage' as name/label.

Clients

Jolokia (1.7.0) 83

http://square.github.com/cubism/
http://d3js.org/
../../client/javascript-cubism.html
/download.html
/download.html
http://www.jquery.com
http://square.github.com/cubism/
http://d3js.org/
http://requirejs.org/docs/whyamd.html
https://github.com/square/cubism/wiki/Context
https://github.com/square/cubism/wiki/Metric

var metricMem = jolokia.metric({
type: 'read',
mbean: 'java.lang:type=Memory',
attribute: 'HeapMemoryUsage',
path: 'used'

},"HeapMemory Usage");

// Example for a callback function for evaluating responses
// dynamically. In this case, the first
// argument is a function, which gets feed with all response objects
// (one in this case). The requests objects are given next, and an
// options object as last argument.
var metricReq = jolokia.metric(

function (resp) {
var attrs = resp.value;
var sum = 0;
for (var key in attrs) {

sum += attrs[key].requestCount;
}
return sum;

},
{

type: "read",
mbean: "Catalina:j2eeType=Servlet,*",
attribute:"requestCount"

},
{ name: "All", delta: 101000});

metric() is a factory method which can be called in various ways.

• If the first argument is a Jolokia request object (i.e. not a function), this request is used for sending
requests periodically.

• If the first argument is a function, this function is used for calculating the numeric value to be
plotted. The rest of the arguments can be one or more request objects, which are registered and
their responses are put as arguments to the given callback function.

• The last argument, if an object but not a Jolokia request (i.e. there is no type key), is taken as an
option object which is described below.

• Finally, if the last argument is a pure string, then this string is used as name for the chart.

An object which can be given as last argument is used for fine tuning the metrics:

name

Name used in charts. The name can also be given alternatively as a string directly as last
argument (but then without any other options)

delta

Delta value in milliseconds for creating delta (velocity) charts. This is done by taking the value
measured that many milliseconds ago and substract them from each other..

keepDelay

How many milliseconds before the oldest shown value should be kept in memory, which e.g. is
necessary for delta charts. When delta is given, this value is implicetly set.

Clients

Jolokia (1.7.0) 84

One or more metric objects can now be converted to charts and added to a website with d3.js. This
is done in the usual cubism way as described here. In our example, in order to append charts to a
div with id chart the following code can be used:

// Use d3 to attach the metrics with a specific graph type
// ('horizon' in this case) to the document
d3.select("#charts").call(function(div) {

div.append("div")
.data([metricMem, metricReq])
.call(context.horizon())

});

For a complete API documentation please refer to the Cubism API.

8.1.6. Maven integration

For maven users' convenience, the Jolokia Javascript package is also available as a JavaScript
artifact. It can be easily included with help of the javascript-maven-plugin.

Recommended plugin
Unfortunately, the "offical" version of this plugin hosted on Codehaus has been stuck at version
1.0-alpha-1-SNAPSHOT. Although it is quite usable, in order to avoid a snapshot dependency, it is
recommended to use a fork of this plugin hosted on GitHub and deployed at the Sonatype
Maven repository.

The following example shows a sample configuration which could be used within a pom.xml:

<project>
...

<dependencies>
<dependency>

<groupId>org.jolokia</groupId>
<artifactId>jolokia-client-javascript</artifactId>
<type>javascript</type>
<version>1.0.5</version>

</dependency>
....

</dependencies>

<build>
<plugins>

<plugin>
<groupId>com.devspan.mojo.javascript</groupId>
<artifactId>javascript-maven-plugin</artifactId>
<version>0.9.3</version>
<extensions>true</extensions>
<configuration>
<useArtifactId>false</useArtifactId>

</configuration>
<executions>
<execution>
<goals>

<goal>war-package</goal>
</goals>

Clients

Jolokia (1.7.0) 85

https://github.com/square/cubism/wiki/API-Reference
https://github.com/harlanji/javascript-maven-tools
https://oss.sonatype.org/content/groups/public
https://oss.sonatype.org/content/groups/public

</execution>
</executions>

</plugin>
......

</plugins>
....

</build>
...
<pluginRepositories>
<pluginRepository>

<id>sonatype-oss</id>
<url>https://oss.sonatype.org/content/groups/public</url>

</pluginRepository>
</pluginRepositories>

</project>

Then, in your webapp project, jolokia.js, jolokia-simple.js and json2.js can be found in the
scripts/lib directory (relative to the top level of you WAR). In order to include it in your HTML files
use something like this:

<head>
<script src="jquery-1.7.2.js"></script>
<script src="scripts/libk/json2.js"></script>
<script src="scripts/lib/jolokia.js"></script>
<script src="scripts/lib/jolokia-simple.js"></script>

</head>

jQuery.js has to be included on its own, though and is not included within the dependency. If the
compressed version of jolokia.js should be used, add a classifier="compressed" to the
jolokia-client-javascript dependency, and include scripts/lib/jolokia-min.js

A full working example can be found in the Jolokia src at client/javascript/test-app/pom.xml.

8.2. Java Client Library

The Java client library provides an easy access to the Jolokia agent from within Java. Since JSR-160
connectors themselves provide Java based remote access to MBeans one might wonder about the
benefits of a Jolokia Java binding. There are several, though:

• It provides a typeless access to remote MBeans. The big advantage is that for any
non-OpenMBean access to custom typed objects is still possible without having the type
information locally in the classpath.

• Jolokia can be used in setups where JSR-160 connectors can not be used. I.e. in firewall secured
environments it is much easier to get through to a Jolokia Agent than to an JSR-160 connector
using RMI as transport protocol.

• Remoteness is explicit in this API instead of JSR-160 connector's seeked transparent remoteness.
RMI has some arguable conceptually advantages, but hiding all remote aspects proved to have
quite some disadvantages when it comes to the programming model. Explicite awareness of a
'heavy-weight' remote call is better than false transparency in order to know the price tag.

Clients

Jolokia (1.7.0) 86

The Java client library follows a strict request-response paradigm, much like the underlying HTTP. It
uses generics heavily and can be centered around three classes: J4pClient is the client side agent,
which has various variants of a execute() for sending requests. This method takes one or more
J4pRequest objects as arguments and returns one or more J4pResponse objects as result.

What the heck is this 'J4p' ?
That's a reminiscence to Jolokia's roots which lies in Jmx4Perl. It is always good to remember
where one comes from ;-)

But before we got into the details, the next section gives a first tutorial to get a feeling how the API
can be used.

8.2.1. Tutorial

As seen in the following example, the usage is quite easy. First a, client object client is created
pointing to a Jolokia agent at http://localhost:8080/jolokia. A read request for querying the heap
memory usage from the MemoryMXBean is created and then send via the execute() to the agent. The
response returned is of type J4pReadResponse and holds the result which finally is printed out to
standard output.

import org.jolokia.client.J4pClient;
import org.jolokia.client.request.*;

public class MemoryDemo {
public static void main(String[] args) {

J4pClient client = new J4pClient("http://localhost:8080/jolokia");
J4pReadRequest request =

new J4pReadRequest("java.lang:type=Memory","HeapMemoryUsage");
request.setPath("used");
J4pReadResponse response = client.execute(request);
System.out.println("Memory used: " + response.getValue());

}
}

In order to compile and run this sample, two support libraries are required in addition to
jolokia-client-java.jar (Download):

• Apache HttpClient, 4.3.3 (Download)

• json-simple, 1.1 (Download)

For maven users, the following dependency is sufficient (it will include the other two as transitive
dependencies):

<dependency>
<groupId>org.jolokia</groupId>
<artifactId>jolokia-client-java</artifactId>
<version>1.2.2</version>

</dependency>

Clients

Jolokia (1.7.0) 87

http://www.jmx4perl.org
../../download.html
http://hc.apache.org/httpcomponents-client-ga/index.html
http://hc.apache.org/downloads.cgi
http://code.google.com/p/json-simple/
http://code.google.com/p/json-simple/downloads/list

8.2.2. J4pClient

J4pClient is the entry point for sending requests to a remote Jolokia agent. It can be created in
multiple ways. For simple cases, public constructors are provided taking the mandatory Jolokia agent
URL and optionally a org.apache.http.client.HttpClient instance which is used for the HTTP
business. The recommended style is to use the J4pClientBuilder, though. This way, all parameters
for the HTTP communication can easily be set:

J4pClient j4p = J4pClient.url("http://localhost:8080/jolokia")
.user("roland")
.password("s!cr!t")
.authenticator(new BasicAuthenticator().preemptive())
.connectionTimeout(3000)
.build();

The builder supports the following parameters with the given defaults:

Table 8.2. J4pClient parameters

Parameter Description Default

url The URL to the Jolokia agent.
This is the only mandatory
parameter.

user User name when authentication
is used. If not set, no
authentication is used. If set,
password must be set, too

password Password used for
authentication. Only used when
user is set.

authenticator Implementation of
J4pAuthenticator. The Java
client comes with one
implementation
BasicAuthenticator for using
basic authentication. This class
supports also preemptive
authentication. Call
preemptive() to switch this on
(see above for an example).
Basic authentication is the
default if no other authenticator
is set.Only used when user is
set, too.

target A JMX JSR-160 ServiceURL
which should be used by the
agent as the real target. This
parameter should be set if the

Clients

Jolokia (1.7.0) 88

Parameter Description Default

client is used for accessing the
agent in Chapter 5, Proxy Mode
.

targetUser The JSR-160 user to use when
using the proxy mode. If not
given (and target is set), then
no authentication is used for
JSR-160 communication.

targetPassword JSR-160 Password to use for
the proxy mode.

connectionTimeout The timeout in milliseconds until
a connection is established. A
timeout value of zero is
interpreted as an infinite
timeout.

20000

pooledConnection Specifies, that the underlying
HttpClient should use pooled
connection manager, which is
thread safe and can service
connection requests from
multiples threads
simultaneously. This is
important if the J4pClient is to
be used in a multi threaded
context. The size of the pool is
restricted by the parameter
maxTotalConnection.
ThreadSafeClientConnManager is
the underlying connection
manager. Pooled connections
are the default.

singleConnection Specifies that single connection
should be used which maintains
only one active connection at a
time. Even though J4pClient is
still thread-safe it ought to be
used by one execution thread
only. The underlying connection
manager is
SingleClientConnManager

Pooled connections are the
default.

maxTotalConnections Defines the number of total
connections to be pooled. It is
only used when
pooledConnection is used.

20

Clients

Jolokia (1.7.0) 89

Parameter Description Default

defaultMaxConnectionsPerRoute Defines the number of total
connections per route. It is only
used when pooledConnection is
used.

20

maxConnectionPoolTimeout Defines the timeout for waiting
to obtain a connection from the
pool. This parameter is only
used when pooledConnections

are used.

500

socketTimeout Defines the socket timeout
(SO_TIMEOUT) in milliseconds,
which is the timeout for waiting
for data or, put differently, a
maximum period inactivity
between two consecutive data
packets. A timeout value of
zero is interpreted as an infinite
timeout.

0

contentCharset Defines the charset to be used
per default for encoding content
body.

ISO-8859-1

expectContinue Activates Expect: 100-Continue

handshake for the entity
enclosing methods. The
purpose of the Expect:

100-Continue handshake to
allow a client that is sending a
request message with a request
body to determine if the origin
server is willing to accept the
request (based on the request
headers) before the client
sends the request body. The
use of the Expect:

100-continue handshake can
result in noticeable
performance improvement for
entity enclosing requests that
require the target server's
authentication.

true

tcpNoDelay Determines whether Nagle's
algorithm is to be used. The
Nagle's algorithm tries to
conserve bandwidth by
minimizing the number of
segments that are sent. When
applications wish to decrease

true

Clients

Jolokia (1.7.0) 90

Parameter Description Default

network latency and increase
performance, they can disable
Nagle's algorithm (that is
enable TCP_NODELAY). Data will
be sent earlier, at the cost of an
increase in bandwidth
consumption.

socketBufferSize Determines the size of the
internal socket buffer in bytes
used to buffer data while
receiving and transmitting
HTTP messages.

8192

proxy Determines http proxy server. It
can be defined as
http://user:password@host:port.
user and password are
optional.

useProxyFromEnvironment Set the proxy for this client
based on http_proxy system
environment variable. Expect
formats are
http://user:pass@host:port or
http://host:port Example:
http://tom:sEcReT@my.proxy.com:8080

responseExtractor A response extractor can be
used for hooking into the JSON
deserialization process when a
JSON response is converted
into a J4pResponse object. By
default, the received JSON
object is examined for a status
code of 200 and only then
creates a response object.
Otherwise an exception is
thrown. An extractor is specified
by the interface
J4pResponseExtractor. Beside
the default extractor, an
alternate extractor
ValidatingResponseExtractor

can be used, which instead of
throwing an exception returns a
null object when the response
has a status of 404. An
extractor can be specified as
extra argument to the execute
method, too.

Clients

Jolokia (1.7.0) 91

The J4pClient provides various variants of a execute() method, which takes either one single request
or a list of requests. For a single request, the preferred HTTP method (GET or POST) can be
specified optionally. The List<R> argument can be used type only for a homogeneous bulk request,
i.e. for multiple requests of the same time. Otherwise an untyped list must be used.

Each request can be tuned by giving a map of processing options along with their values to the
execute method. The possible options are shown in table Table 8.3, “J4pClient query parameters”.

Table 8.3. J4pClient query parameters

J4pQueryParameter enum Description

MAX_DEPTH Maximum traversal depth for serialization of
complex objects. Use this with a "list" request to
restrict the depth of the returned meta data tree.

MAX_COLLECTION_SIZE Maximum size of collections returned during
serialization. If larger, a collection is truncated to
this size.

MAX_OBJECTS Maximum number of objects returned in the
response's value.

IGNORE_ERRORS Option for ignoring errors during JMX operations
and JSON serialization. This works only for
certain operations like pattern reads and should
be either true or false.

INCLUDE_STACKTRACE Whether to include a stack trace in the response
when an error occurs. The allowed values are
true for inclusion, false if no stacktrace should
be included or runtime if only RuntimeExceptions
should be included. Default is true.

SERIALIZE_EXCEPTION Whether to include a JSON serialized version of
the exception. If set to true, the exception is
added under the key error_value in the
response. Default is false.

CANONICAL_NAMING Whether property keys of ObjectNames should be
ordered in the canonical way or in the way that
they are created. The allowed values are either
true in which case the canonical key order (==
alphabetical sorted) is used or false for getting
the keys as registered. Default is true

8.2.3. Request types

For each request type a dedicated request object is provided which all are subclasses from
J4pRequest. For all requests it can be specified which HTTP method is to be used by setting the
property preferredHttpMethod to either GET or POST. Each request type has a corresponding response
type which used for the return values of the J4pClient.execute().

Clients

Jolokia (1.7.0) 92

The constructor of each kind of request can take a J4pTargetConfig as argument for using a request
in Chapter 5, Proxy Mode . This configurational object holds the JMX service url and (optionally)
credentials for JSR-160 authentication. When given, this proxy target specification overrides any
default proxy configuration set during the initialization of the J4pClient.

J4pReadRequest and J4pReadResponse

J4pReadRequest is a read request to get one or more attributes from one or more MBeans within a
single request. Various constructor variants can be used to specify one or more attributes along
with the ObjectName (which can be a pattern). A path can be set as property for specifying an
inner path, too.

J4pReadResponse is the corresponding response type and allows typed acces to the fetched value
for a single attribute fetch or to multiple values for a multi attribute read. In the latter case, the
found object and attributes names can be retrieved as well.

For more information on fetching the value of multiple attributes and multiple MBeans at once,
please refer to Section 6.2.1, “Reading attributes (read)” or the Javadoc of J4pReadResponse.

J4pWriteRequest and J4pWriteResponse

A J4pWriteRequest is used to set the value of an MBean attribute. Beside the mandatory object
and attribute name the value must be give in the constructor as well. Optionally a path can be
provided, too. Only certain types for the given value can be serialized properly for calling the
Jolokia agent as described in Section 6.4.2, “Request parameter serialization”.

The old value is returned as J4pWriteResponse's value.

J4pExecRequest and J4pExecResponse

J4pExecRequests are used for executing operation on MBeans. The constructor takes as
mandatory arguments the MBean's object name, the operation name and any arguments
required by the operation. Only certain types for the given arguments can be serialized properly
for calling the Jolokia agent as described in Section 6.4.2, “Request parameter serialization”.

The returned J4pExecResponse contains the return value of the operation called.

J4pSearchRequest and J4pSearchResponse

A J4pSearchRequest contains a valid single MBean object name pattern which is used for
searching MBeans.

The J4pSearchResponse holds a list of found object names.

J4pListRequest and J4pListResponse

For obtaining meta data on MBeans a J4pListRequest should be used. It can be used with a inner
path to obtain only a subtree of the response, otherwise the whole tree as described in
Section 6.2.5.3, “List response” is returned. With the query parameter maxDepth can be used to
restrict the depth of returned tree.

The single value of a J4pListResponse is a tree (or subtree) as a JSON object, which has the
format described in Section 6.2.5.3, “List response”.

J4pVersionRequest

A J4pVersionRequest request the Jolokia agent's version information and takes no argument.

The J4pVersionResponse returns the agent's version (agentVersion), the protocol version

Clients

Jolokia (1.7.0) 93

protocolVersion), the application server product name (product), the vendor name (vendor) and
any extra info (extraInfo) specific to the platform the Jolokia is running on.

8.2.4. Exceptions

In case of an error when executing a request a J4pException or one its subclass is thrown.

J4pConnectException

Exception thrown when the connection to the server fails. It contains the original
ConnectException as nested value.

J4pTimeoutException

Exception thrown in case of an timeout. The nested exception is of type ConnectTimeoutException.

J4pRemoteException

Generic exception thrown when an exception occurred on the remote side. This is the case when
the JSON response obtained is an error response as described in Section 6.1.3, “Responses”.
The error type, error value, the status, the request leading to this error and the remote stacktrace
as string) can be obtained from this exception.

J4pBulkRemoteException

Exception thrown when a bulk request fails on the remote side. This contains a mixed list which
contains the J4pRemoteException occurred as well as the J4pResponse objects for the requests,
which succeeded. The list obtained by getResults() contains these objects in the same order as
the list of requests given to execute. All responses and remote exceptions can also be obtained
separately in homogeneous lists.

J4pException

Base exception thrown, when no other exception fits, i.e. when the exception happened on the
client side. The original exception is contained as nested exception.

Clients

Jolokia (1.7.0) 94

Chapter 9. Jolokia JMX
The main focus of Jolokia is to allow easy access to JMX MBeans from everywhere. MBeans can be
provided by the JVM itself, by an application server or an application itself, where each MBean is
registered at a specific MBeanServer. Multiple MBeanServers can co-exist in a single JVM. The so
called PlatformMBeanServer is always present and is created by the JVM during startup. Especially
application servers often create additional MBeanServers for various purposes. When accessing an
MBean remotely via JSR-160, the MBeanServer holding the requested MBean must be known
before. Jolokia instead merges all MBeanServers it can find to give a single view on all MBeans. The
merging algorithm is described in Section 9.1.1, “MBeanServer merging”.

For application specific MBeans, Jolokia provides an own, so called Jolokia MBeanServer which is
treated specially by the Jolokia agent. The Jolokia MBeanServer and its features are explained in
Section 9.1, “Jolokia MBeanServer”.

Developing application specific MBeans is easy, especially if Standard MBeans are used. However,
for Spring users there is even a easier, more declarative way for turning POJOs into MBeans. On top
of this Jolokia provides an easy, declarative way for firing up a Jolokia JVM agent merely by including
some Jolokia specific Spring configuration. This is described in Section 9.3, “Spring Support”.

9.1. Jolokia MBeanServer

JBoss 7 Gotcha
For JBoss 7 there is a slight issue when creating a new MBeanServer. For this to work, a
jboss-deployment-structure with a dependency on org.jboss.as.jmx must be added. For an
example see the integration test war, the location to where to put this file is explained in the
JBoss documentation

The Jolokia MBeanServer can be easily created and used with a locator:

MBeanServer jolokiaServer = JolokiaMBeanServerUtil.getJolokiaMBeanServer();

This server is treated specially by a Jolokia Agent:

• Every MBean registered at the Jolokia MBeanServer will never show up remotely via JSR-160.
The Jolokia MBeanServer is never exposed over JSR-160.

• Each Jolokia MBeanServer registered MBean will shadow any MBean with the same ObjectName
in any other MBeanServer present. See below for more details.

• The Jolokia MBeanServer is also responsible for managing so called JSON MBeans. These are
MBeans annotated with @JsonMBean on the class level. JSON MBean are explained in Section 9.2,
“@JsonMBean”

9.1.1. MBeanServer merging

Jolokia (1.7.0) 95

http://docs.oracle.com/javase/tutorial/jmx/mbeans/standard.html
http://static.springsource.org/spring/docs/3.2.1.RELEASE/spring-framework-reference/html/jmx.html
https://github.com/rhuss/jolokia/blob/master/it/war/src/main/webapp/WEB-INF/jboss-deployment-structure.xml
https://docs.jboss.org/author/display/AS7/Developer+Guide#DeveloperGuide-JBossDeploymentStructureFile

Jolokia tries hard to detect as many MBeanServer as available in a JVM. Beside the always present
PlatformMBeanServer many application servers create own MBeanServer which not always can be
found with standard mechanisms. Therefore Jolokia comes with so called ServerDetectors for many
known brands of applications server. These server detectors know how to find MBeanServer by
application server specific means.

The set of available of MBeanServers is detected during startup and kept, except for the Jolokia
MBeanServer which can kick in and out at any time. For Jolokia operations, all these MBeanServers
are tried according the order given below.

• The Jolokia MBeanServer is queried first, if available.

• Next every MBeanServer as detected by the server detectors a queried in turn.

• All MBeanServers returned by MBeanServerFactory.findMBeanServer(null) are called if not already
tried previously.

• Finally, the ManagementFactory.getPlatformMBeanServer() is used (also, if not found in a former
step).

All MBeans contained in all detected MBeanServers are merged to give a single view on the set of
available MBeans. For MBeans registered with the same name at different MBeanServers, MBeans
registered in later MBeanServers are not visible. These hidden MBeans will never be called on READ,
WRITE or EXEC operations. Also, for LIST operations only the meta data of the visible MBeans is
returned.

This hiding mechanism is used by @JsonMBean to provide a different view of an MBean for JSR-160
connectors (see below).

9.2. @JsonMBean

JMX 1.4 introduced MXBeans which allows for nearly arbitrary data to be translated into so called
OpenData which are accessible via JMX. For example, arbitrary Java Beans are translated into a
CompositeData structure with property names as keys and their values in OpenData values.

Jolokia provides an annotation @JsonMBean for marking an MBean as a JSON MBean. Such an
MBean, if registered at the Jolokia MBeanServer creates a proxy on the PlatformMBeanServer where
every complex value gets translated into plain strings in JSON format. This is true for attributes,
operation return values and arguments. That way, a JSR-160 based console (like jconsole) can
easily access complex data type exposed by custom MBeans. Json MBeans work for Java 6 and
newer.

Figure 9.1. A JsonMBean in jconsole

JsonMBean and MXBean are quite similar as both do a translation from complex data types to a
standard format (OpenType for MXBeans, JSON strings for JsonMBean). However, there are also
differences:

• MXBeans are a standard mechanism which are available on every JVM since 1.5.1

Jolokia JMX

Jolokia (1.7.0) 96

http://docs.oracle.com/javase/6/docs/api/javax/management/MXBean.html
http://docs.oracle.com/javase/6/docs/api/javax/management/openmbean/CompositeData.html

1 For JBoss prior to version 7 there are some slight issues since JBoss used to replace the standard MBeanServer with an
own variant. See this discussion for details.

• Serialisation of complex Java Beans is more powerful with JsonMBeans, e.g. Jolokia can detect
self (or cyclic) object references. MXBeans will cause an error in this case.

• JsonMBeans must be added to the Jolokia MBeanServer to work. MXBeans work with the
PlatformMBeanServer, too.

• JsonMBean work also with JMX support libraries which use ModelMBeans unde the hood. E.g.
Spring JMX uses a ModelMBean for @ManagedResource annotated MBeans. @JsonMBean can be
easily added, whereas @MXBean wouldn't work here.

The Jolokia MBeanServer and the @JsonMBean annotation are contained in the Maven module
jolokia-jmx.

9.3. Spring Support

A Jolokia agent can be easily integrated into a Spring application context. A dedicated artifact
jolokia-spring can be used, which comes with a custom Spring configuration syntax.

For Maven based projects, a simple dependency declaration is sufficient:

<dependency>
<groupId>org.jolokia</groupId>
<artifactId>jolokia-spring</artifactId>
<version>1.1.0</version>

</dependency>

9.3.1. JVM agent

With this in place, the following configuration can be used to fire up a Jolokia JVM based agent using
the HTTP server which comes with OpenJDK/Oracle JVMs (Version 6 or later).

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jolokia="http://www.jolokia.org/jolokia-spring/schema/config"
xsi:schemaLocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

http://www.jolokia.org/jolokia-spring/schema/config
http://www.jolokia.org/jolokia-spring/schema/config/jolokia-config.xsd

">

<jolokia:agent lookupConfig="false" systemPropertiesMode="never">
<jolokia:config

autoStart="true"
host="0.0.0.0"
port="8778"
....
/>

</jolokia:agent>
</beans>

Jolokia JMX

Jolokia (1.7.0) 97

https://community.jboss.org/thread/167796
http://static.springsource.org/spring/docs/3.0.x/reference/jmx.html

There are two directives available: <jolokia:agent> declares a Jolokia server with a configuration as
defined in an embedded <jolokia:config> configuration section.

IDE support
With a decent IDE like IntelliJ IDEA you get completion support on the configuration attributes
so it can be easily determined which configuration options are available. Even better, there is
also some documentation for each attribute (e.g. by using "Quick documentation" with ^Q in
IDEA with).

<jolokia:agent> has an attribute lookupConfig. If set to true, externally defined <jolokia:config>

sections will be looked up, too and merged with the embedded configuration. A <jolokia:config> has
an order attribute, which determines the config merge order: The higher order configs will be merged
later and hence will override conflicting parameters. By default, external config lookup is disabled.

The attribute systemPropertiesMode determines, how system properties with a prefix jolokia. can be
used as configuration values. There are three modes available:

Table 9.1. System properties modes

Mode Description

never No lookup is done on system properties as all.
This is the default mode.

fallback System properties with a prefix jolokia. are
used as fallback configuration values if not
specified locally in the Spring application
context. E.g. jolokia.port=8888 will change the
port on which the agent is listening to 8888 if the
port is not explicitly specified in the configuration.

override System properties with a prefix jolokia. are
used as configuration values even if they are
specified locally in the Spring application
context. E.g. jolokia.port=8888 will change the
port on which the agent is listening to 8888 in
any case.

<jolokia:config> takes as attributes all the configuration parameters for the JVM agent as described
in Table 3.6, “JVM agent configuration options”. In addition, the is an extra attribute autoStart which
allows for automatically starting the HTTP server during the initialization of the application context. By
default this is set to true, so the server starts up automatically by default.

Just in case you don't want to use the Jolokia Spring namespace you can also use plain beans to
configure a JVM agent. The following examples shows the example above with only base Spring
bean configurations (including an Spring EL expression) :

<beans xmlns="http://www.springframework.org/schema/beans"

Jolokia JMX

Jolokia (1.7.0) 98

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:util="http://www.springframework.org/schema/util"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/util

http://www.springframework.org/schema/util/spring-util.xsd">

<bean name="server" id="jolokia" class="org.jolokia.jvmagent.spring.SpringJolokiaAgent">
<property name="lookupConfig" value="false"/>
<property name="systemPropertiesMode" value="never"/>
<property name="config">

<bean class="org.jolokia.jvmagent.spring.SpringJolokiaConfigHolder">
<property name="config">
<util:map>
<entry key="autoStart" value="true"/>
<entry key="host" value="0.0.0.0"/>
<entry key="port" value="#{configuration['jmx.jolokiaPort']}"/>
...

</util:map>
</property>

</bean>
</property>

</bean>

</beans>

This style however is only recommended if there are some issues with the Jolokia spring
configuration setup (like using Spring EL expressions in Jolokia versions earlier than 1.2.4).
Otherwise, the Jolokia configuration namespace is much easier to read.

9.3.2. Jolokia MBeanServer

With <jolokia:mbean-server> the Jolokia MBeanServer can be specified. This is especially useful for
adding it to <context:mbean-export> so that this MBeanServer is used for registering
@ManagedResource and @JsonMBean. Remember, MBean registered at the Jolokia MBeanServer never
will show up in an JSR-160 client except when annotated with @JsonMBean.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:jolokia="http://www.jolokia.org/jolokia-spring/schema/config"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.jolokia.org/jolokia-spring/schema/config

http://www.jolokia.org/jolokia-spring/schema/config/jolokia-config.xsd
http://www.springframework.org/schema/context

http://www.springframework.org/schema/context/spring-context.xsd
">

<context:mbean-export server="jolokiaServer"/>
<jolokia:mbean-server id="jolokiaServer"/>

</beans>

Jolokia JMX

Jolokia (1.7.0) 99

9.3.3. Jolokia Spring plugin

There is an even simpler way to startup a Jolokia JVM agent with a default setup if you use a variant
of the jolokia-spring module with the classifier plugin. This artefact contains a predefined Spring
configuration for starting up Jolokia with default values automatically:

<dependency>
<groupId>org.jolokia</groupId>
<artifactId>jolokia-spring</artifactId>
<classifier>plugin</classifier>
<version>1.1.0</version>

</dependency>

Beside putting this jar into the classpath (along with its dependencies) the only requirement is, that
the Spring application context needs to pickup classpath:META-INF/spring/jolokia.xml. Luckily,
many Spring based containers like the Camel Maven Plugin do this automatically for you, nothing
has to be configured here. Otherwise this application context path has to be added manually, but in
this case it is probably easier to use the non-plugin version (without classifier) and declare the Jolokia
server explicitly in an existing Spring configuration file as described above.

By default, the Jolokia agent starts on port 8778 on every IP-Address of the host without security.

The configuration can be tweaked via system properties as described in Table 9.1, “System
properties modes”. I.e. the plugin doesn't specify any configuration on its own and uses a
systemPropertiesMode of "fallback".

As an alternative, the default settings can be customized by providing a standalone <jolokia:config>

somewhere in the Spring application context. An order attribute can be used if multiple config
declarations are present: the higher the order, the higher the priority. But then again, instead of using
the plugin with an external configuration it is probably better to us an explicite <jolokia:agent>

declaration, since you have to add to a Spring configuration file anyway.

Jolokia JMX

Jolokia (1.7.0) 100

http://camel.apache.org/camel-maven-plugin.html

Chapter 10. Tools
Various tools complete the Jolokia portfolio. Some of the are available under the Jolokia umbrella,
some of them are hosted elsewhere. This chapter gives an overview of this tool landscape.

10.1. Jmx4Perl

10.2. Jolokia Roo Addon

The Jolokia Roo addon allows for easy integration of an agent servlet in an existing Roo web project.

Note

This addon has been submitted to the Roobot, a central Roo addon registry. Until it is
publicly available you can directly install the addon from our repository.

roo> osgi obr url add --url http://labs.consol.de/maven/repository/roo-repository.xml
roo> osgi obr start --bundleSymbolicName org.jolokia.roo

Alternatively, if there are problems with the approach above (which is currently the case
because the hard coded public PGP keyserver which is used by Roo 1.1.1 is down) and
you don't need PGP verification, you can install the addon bundle directly from our
repository:

roo> osgi start --url http://labs.consol.de/maven/repository/org/jolokia/jolokia-roo/0.83/jolokia-roo-0.83.jar

As soon as src/main/webapp/WEB-INF/web.xml is available in the roo project, Jolokia can be setup with
the command jolokia setup. This will add the proper dependency in the pom.xml and adapt web.xml
so that an agent servlet gets registered under the subcontext jolokia (so, when you web application
is deployed under the context /mywebapp, the agent is reachable under /mywebapp/jolokia. This
command knows about the options described in Table 10.1, “jolokia setup Options”, all of which are
optional.

Table 10.1. jolokia setup Options

Option Description

--addPolicy This adds an additional jolokia-access.xml

below src/main/resources to allow putting
access restrictions into place. The installed
template, however, doesn't come with any
restriction but contains sample configurations
commented out.

--addJsr160Proxy Adapts the agent servlet's init-param to add an

Jolokia (1.7.0) 101

http://www.springsource.org/roo

Option Description

additional
org.jolokia.jsr160.Jsr160RequestDispatcher

request dispatcher which allows the installed
servlet to act as an JSR-160 proxy. See
Chapter 5, Proxy Mode for details about the
JSR-160 proxy

--addDefaultInitParams By default, the servlet gets registered without
any init parameters. With this option, all available
init-param are added to the servlet definition
with their default values.

Tools

Jolokia (1.7.0) 102

	Jolokia - Reference Documentation
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Architecture
	2.1. Agent mode
	2.2. Proxy Mode

	Chapter 3. Agents
	3.1. Java EE Agent (WAR)
	3.1.1. Installation and Configuration
	3.1.2. Security Setup
	3.1.3. Programmatic usage of the Jolokia agent servlet

	3.2. OSGi Agents
	3.2.1. jolokia-osgi.jar
	3.2.2. Running on Glassfish v3 upwards
	3.2.3. jolokia-osgi-bundle.jar
	3.2.4. Programmatic servlet registration
	3.2.5. Restrictor service

	3.3. Mule Agent
	3.4. JVM Agent
	3.4.1. Jolokia as JVM Agent
	3.4.1.1. Installation

	3.4.2. Attaching a Jolokia agent on the fly

	Chapter 4. Security
	4.1. Policy based security
	4.1.1. IP based restrictions
	4.1.2. Commands
	4.1.3. Allow and deny access to certain MBeans
	4.1.4. HTTP method restrictions
	4.1.5. Cross-Origin Resource Sharing (CORS) restrictions
	4.1.6. Example for a security policy
	4.1.7. Policy Location

	4.2. Jolokia Restrictors

	Chapter 5. Proxy Mode
	5.1. Limitations of proxy mode

	Chapter 6. Jolokia Protocol
	6.1. Requests and Responses
	6.1.1. GET requests
	6.1.2. POST requests
	6.1.3. Responses
	6.1.4. Paths

	6.2. Jolokia operations
	6.2.1. Reading attributes (read)
	6.2.1.1. GET read request
	6.2.1.2. POST read request
	6.2.1.3. Read response

	6.2.2. Writing attributes (write)
	6.2.2.1. GET write request
	6.2.2.2. POST write request
	6.2.2.3. Write response

	6.2.3. Executing JMX operations (exec)
	6.2.3.1. GET exec request
	6.2.3.2. POST exec request
	6.2.3.3. Exec response

	6.2.4. Searching MBeans (search)
	6.2.4.1. GET search request
	6.2.4.2. POST search request
	6.2.4.3. Search response

	6.2.5. Listing MBeans (list)
	6.2.5.1. GET list request
	6.2.5.2. POST list request
	6.2.5.3. List response
	6.2.5.4. Restrict depth of the returned tree

	6.2.6. Getting the agent version (version)
	6.2.6.1. GET version request
	6.2.6.2. POST version request
	6.2.6.3. Version response

	6.3. Processing parameters
	6.4. Object serialization
	6.4.1. Response value serialization
	6.4.2. Request parameter serialization
	6.4.2.1. GET request values
	6.4.2.2. POST request values

	6.4.3. Jolokia and MXBeans

	6.5. Tracking historical values
	6.6. Proxy requests
	6.7. Agent Discovery
	6.8. Jolokia protocol versions

	Chapter 7. Jolokia MBeans
	7.1. Configuration MBean
	7.1.1. Debugging
	7.1.2. History store

	7.2. Server Handler
	7.3. Discovery MBean

	Chapter 8. Clients
	8.1. Javascript Client Library
	8.1.1. Installation
	8.1.2. Usage
	8.1.2.1. Requests
	8.1.2.2. Request options
	8.1.2.3. Operational modes

	8.1.3. Simple API
	8.1.4. Request scheduler
	8.1.5. Jolokia as a Cubism Source
	8.1.6. Maven integration

	8.2. Java Client Library
	8.2.1. Tutorial
	8.2.2. J4pClient
	8.2.3. Request types
	8.2.4. Exceptions

	Chapter 9. Jolokia JMX
	9.1. Jolokia MBeanServer
	9.1.1. MBeanServer merging

	9.2. @JsonMBean
	9.3. Spring Support
	9.3.1. JVM agent
	9.3.2. Jolokia MBeanServer
	9.3.3. Jolokia Spring plugin

	Chapter 10. Tools
	10.1. Jmx4Perl
	10.2. Jolokia Roo Addon

