Getting Started with Metro

Getting Started with Metro

Abstract

This series of articles will familiarize developers with the basics of Metro and introduce some of its main features.

Table of Contents

Building a Simple Metro APPlICaLTIONiiiiiieeiii e
Enabling Advanced Featuresin a Web Service AppliCationcooevviiiiiiiiiiiiieii e

Building a Simple Metro Application

Abstract

Theintent of this article is to demonstrate the steps required to build aweb service starting both from Java code and
from aWSDL document, to deploy that application into aweb container, and to build a corresponding web service
client application. In this example, the resulting application is portable across JAX-WS 2.0 implementations and do
not use any Metro-specific technologies. It is intended as a baseline from which to develop your understanding of
the larger Metro stack.

Table of Contents

IO = 4= PP 1
2. Environment Configuration SEHINGSuueiiiieiii e e e e e e e aas 1
3. Building @ JAX-WS WED SEIVICEouiiiii i 3
4. Deploying the Web Service to aWeb CONtaiNercovuiiiiiiiiiiieiie e 4
5. Building a JAX-WS Web Service ClIentcoovuiiiiiiciiec e 5
6. RUNNING the WED SErvice CHENtovie e e 5
7. Undeploying @ JAX-WS WED SEIVICEuiiii i 6

1. Overview

Supporting code samples are included to demonstrate building a JAX-WS web service in the Metro en-
vironment. The examples show how to develop a web service both starting from Java source code and
starting from an existing WSDL document. For both scenarios, it shows how to develop a corresponding
client application from the web service's WSDL document. Additional example shows how to use exter-
nal web service metadata feature, which is necessary in case we are unable to use java annotations. The
examples can be found below:

» From-Java example [download/wsit-jaxws-fromjava.zip]

* From-WSDL example [download/wsit-jaxws-fromwsdl.zip]

» External web service metadata example [downl oad/wsit-external -metadata.zip]

As mentioned above, these examples do not enable any Metro-specific technologies. However, the fol-
lowing article in this series, Enabling Advanced Features in a Web Service Application, builds on the

information presented in this document. It explains configuring a web service and its client to enable ad-
vanced features available in Metro.

2. Environment Configuration Settings

2.1. Prerequisites

These series of articles require the following software to be installed on your system:
» JDK 6.0 Update 29 [http://www.oracle.com/technetwork/javaljavase/downl oads/index.html] or later,

» Apache Ant 1.6.5 [http://ant.apache.org/] or later,

download/wsit-jaxws-fromjava.zip
download/wsit-jaxws-fromjava.zip
download/wsit-jaxws-fromwsdl.zip
download/wsit-jaxws-fromwsdl.zip
download/wsit-external-metadata.zip
download/wsit-external-metadata.zip
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://ant.apache.org/

Building a Simple Metro Application

e web container: either Glassfish v3.x [http://glassfish.javanet/] or Apache Tomcat 7.0 [http://
tomcat.apache.org/]

» Metro Standalone Budle 2.x [http://metro.java.net/] (in case of using Apache Tomcat asaweb container)

2.2. Adding WSIT (Metro) libraries into your web contain-
er

Thefollowing stepsarerequired only if using Apache Tomcat asaweb container (Glassfish v3 already con-
tainsMetro libraries): Unzip downloaded Metro Standalone Bundleand copy all . j ar filesfromthel i b/
directory into <t ontat-i nstal | -di rect ory>/ endor sed (where <tontat-install-di-
rect or y> points to your Apache Tomcat installation directory). Also put a copy of the ser vl et -
api . jar library (<t ontat-i nstal |l -directory>/1ib)intoendorsed/ libs.

2.3. Web Container "Listen" Port

The Java code and configuration files for the examples used in this document presume that the web con-
tainer is listening on port 8080. Port 8080 is the default "listen" port for both GlassFish (domai n1) and
Tomcat. If you have changed the "listen" port, you will need to edit the example source files to account
for that. The following isalist of the files which contain referencesto the "listen” port:

1. wsit-jaxws-fronjaval/src/fronjaval server/ AddWebservice. java

2. wsit-jaxws-fronjaval etc/custom schenma. xni

3. wsit-jaxws-fronjaval/etc/customclient.xnl

4. wsi t-jaxws-fronjaval/etc/build. properties

5. wsit-jaxws-fromwsdl /etc/customclient.xnl

6. wsit-jaxws-fromnsdl /etc/build. properties

2.4. Web Container Home Directory

Before building and deploying the web service and its client, the home directory of the web container must
be set either as an environment variable or as a property in the respectivebui | d. xm file.

Environment Variables

Assuming that you are running from the command-line, it is probably simplest to set the appropriate en-
vironment variable indicating the web container's "home" directory. For GlassFish, AS HOVE should be
set to the top-level directory of the GlassFish installation. For Tomcat, CATALI NA HOVE needsto be set
to the Tomcat top-level directory.

Ant bui | d. xm File

If you would rather not have to set the environment variable for each new terminal session, you can edit
thebui | d. xml filelocated at the top-level directory of each of the examples. There are two comment-
ed lines, one each for GlassFish (as. hone) and Tomcat (cat al i na. hone). Simply uncomment the
appropriate line and edit the value for the directory name.

http://glassfish.java.net/
http://glassfish.java.net/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://metro.java.net/
http://metro.java.net/

Building a Simple Metro Application

3. Building a JAX-WS Web Service

3.1. Starting from Java

Oneway to create aweb service applicationisto start by coding the endpoint in Java. If you are developing
your Java web service from scratch or have an existing Java class you wish to expose as a web service,
thisisthe most direct path.

The web service is written as a hormal Java class. Then the class and its methods that are to be exposed
are annotated with specific web service annotations, @\ébSer vi ce and @\bMet hod. The following
code snippet shows an example:

@\¢bServi ce
AddNunber sl npl {
@\bMet hod
addNunbers(a, b) AddNunbersException {
(a<0]] b<0) {
AddNunber sExcepti on(,
+a+ + b);

a + b;

}

If you are using GlassFish, the web serviceinthewsi t - j axws- f r onj ava example can be compiled
and bundled simply by invoking:

ant server

If using Tomcat, the command-line would be;

ant -Duse.tontat=true server

The server targetin bui | d. xm in turn invokes the tools necessary to process the annotations and
compilethe sources, and to bundlethe Javaclassfilesand configuration filesinto adepl oyable web archive
(WAR file). The WAR filewill bebui | d/ war / wsi t - j axws-fronj ava. war . Thetoolsthat were
called by ant during this step are briefly described next.

The JAX-WS tool apt (anhotation processing tool) processes the annotated source code and invokes the
compiler itself, resultingin the classfilesfor each of the Javasourcefiles. Intheaccompanyingf r onj ava
example, the ant target build-server-java in bui | d. xm handles this portion of the process. Then the
individual classfiles are bundled together along with the web service's supporting configuration files into
the application's WAR file. It is this file that will be deployed to the web container in the next step. The
create-war target takes care of this.

3.2. Starting from WSDL

Typically, you would start from WSDL to build your web serviceif you want to implement aweb service
that is already defined either by a standard or an existing instance of the service. In either case, the WSDL
already exists. The JAX-WSwsimport tool will processthe existing WSDL document, either from alocal
copy on disk or by retrieving it from a network address. An example of manually accessing a service's
WSDL using aweb browser is shown below as part of the section on verifying deployment.

Asinthepreviousexample, tobuildthewsi t - j axws- f r omwsdl servicefor GlassFish, you cansimply
invoke:

Building a Simple Metro Application

ant server
Otherwise for Tomcat use:

ant -Duse.tontat=true server

wsimport will take the WSDL description and generate a corresponding Javainterface and other support-
ing classes. Then the Java compiler needs to be called to compile both the user's code and the generated
code. Finally, the classfiles are bundled together into the WAR file. The details can be seeninthewsi t -

j axws-fromasdl buil d. xml fileasthe build-server-wsdl and create-war targets.

4. Deploying the Web Service to a Web Con-
tainer

As a convenience, invoking each sample's server target will build that web service's WAR file and im-
mediately deploy it to the web container. However, in some situations, such as after undeploying a web
service from its container, it may be useful to deploy the web service without rebuilding it.

For both the from Java and from WSDL scenarios described above, the resulting application is deployed
in the same manner. However, the details of the deployment process differ dightly between the GlassFish
and Tomcat web containers.

4.1. Deploying to GlassFish

For development purposes, it is simplest to use the "autodeploy” facility of GlassFish. To do so, copy your
application's WAR fileto theaut odepl oy directory for the domain to which you want to deploy. If you
are using the default domain, domai nl, set up by the GlassFish installation process, then the appropriate
directory path would be <gl assfi sh-i nstal | - home>/ domai ns/ donai nl/ aut odepl oy.

Thebui | d. xm filewhich accompaniesthisexample hasadeploy target for GlassFish. Invokethat target
by running ant in the top-level directory of the respective examples, either f r onj ava or f r omasdl
asfollows.

ant depl oy

4.2. Deploying to Tomcat

Tomcat also hasan "autodeploy" feature. That feature can be turned off but is enabled by Tomcat’s" out of
the box" configuration settings. Look in <t ontat -i nstal | -di rect ory>/ conf/server. xm
for the value of "aut oDepl oy" if you are unsure. Assuming "aut oDepl oy" is enabled, then copying
your application to <t ontat - i nst al | - hone>/ webapps isal that is necessary. Again, thereisa
target in the ant bui | d. xm file which accompanies this sample. The deploy target can be invoked by
running the following command in the example's top-level directory.

ant -Duse.tontat=true depl oy

4.3. Verifying Successful Deployment

One basic test to verify that the application has deployed properly isto use aweb browser to retrieve the
application's WSDL from its hosting web container. The following URLswould retrieve the WSDL from
each of the two example services. If you are running your web browser and web container on different
machines, you will need to replace "localhost" with the name of the machine hosting your web service. It
is also worth ensuring that your web container is actually running at this point.

Building a Simple Metro Application

« http://localhost:8080/wsit-jaxws-fromjava/addnumbersAwsdl
« http://localhost:8080/wsit-jaxws-fromwsdl/addnumbers?2wsdl

If the browser displays a pageful of XML, things are working. If not, check the web container logs
for any error messages related to the the sample WAR you have just deployed. For GlassFish, the
appropriate log can be found at <gl assfi sh-i nstal |l -directory>/ donmai ns/ <your - do-
mai n>/ | ogs/ server. | og. For Tomcat, the appropriate log filewill be<t ontat -i nstal | - di -
rectory>/1ogs/catalina.out.

5. Building a JAX-WS Web Service Client

Unlike developing a web service provider, the process for creating a web service client application will
always start with an existing WSDL document. This process is similar to the steps taken when building
a service from an existing WSDL. Typicaly, the WSDL will be retrieved directly from a web service
provider by the wsimport tool . Wsimport then generates the corresponding Java source code for the
described interface. javac, the Java compiler, is then called to compile the source into class files. The
programmer's code uses the generated classes to access the web service. Here is an example code snippet:

AddNunber sPort Type port = AddNunbersService().get AddNunbersPort();
a = 10;

b = 20;

result = port.addNunbers(a,b);

For both of the associated examples, invoking
ant client
or

ant -Duse.tontat=true client

will run wsimport to retrieve the service's WSDL and compile the source.

6. Running the Web Service Client

For both examples, execute the resulting command-line clientsvia

ant run
or

ant -Duse.tontat=true run

That target simply runs Java with the name of the client's class, such as java
fromwsdl.client. AddNumber sClient. However, for convenience the run target takes care of passing a
list of jar files via Java's - cl asspat h option. When you invoke the run target, you can expect to see
output from the client similar to the following:

[java] May 4, 2006 2:45:50 PM
[com sun. xm . ws. pol i cy.jaxws. Pol i cyWsDLPar ser Ext en
sion] addd ient ConfigToMap
[java] WARNI NG Optional client configuration file URL is missing. No client
con
figuration is processed.
[java] I nvoki ng addNunbers(10, 20)
[java] The result of adding 10 and 20 is 30.

http://localhost:8080/wsit-jaxws-fromjava/addnumbers?wsdl
http://localhost:8080/wsit-jaxws-fromwsdl/addnumbers?wsdl

Building a Simple Metro Application

[java] Invoki ng addNunbers(-10, 20)
[java] Caught AddNunbersFault _Exception: Nunbers: -10, 20

The WARNI NG line above is expected for both of these examples. Given that no Metro technologies are
enabled, a configuration file is unnecessary. More information will be provided on Metro configuration
filesin the following article.

7. Undeploying a JAX-WS Web Service

Undeploying a web service means to disable & remove it from the web container. Clients will no longer
be able to use the web service nor will the web service restart without explicit redeployment by the user.
During the development process, it is often useful to undeploy a web service. This section explains the
necessary steps for both GlassFish and Tomcat.

7.1. Undeploying from GlassFish

The asadmin command provides the simplest method of undeploying aweb service from GlassFish.

asadmi n undepl oy --user adnmin wsit-jaxws-fron ava
asadm n undepl oy --user admin wsit-jaxws-fromsdl

7.2. Undeploying from Tomcat

Undeploying agiven web service from Tomcat requires deleting its WAR file from the Tomcat webapps
directory. For atypical UNIX scenario the commands bel ow would delete the sample WAR files. Tomcat
then automatically undeploys the web service within afew seconds.

rm $CATALI NA_HOVE/ webapps/ wsi t -j axws-f r onj ava. war
rm $CATALI NA_HOVE/ webapps/ wsi t - j axws- f r omasdl . war

Enabling Advanced Features in a Web
Service Application

Abstract

This article highlights the steps required to enable Metro-specific advanced functionalitiesin aweb service and its
corresponding client application. Aswith the previous article, two accompanying code samples are included. Again,
one starts from Java source code and the other from an existing WSDL document to develop their respective web
services. However, this article and its code samples show how WS-Palicy can used to enable WS-Addressing and
WS-Reliable Messaging in the web services and their clients.

Table of Contents

O = 4= T PP 7
2. Prerequisites and Environment Configurationceeeueioriuirenieee e e ee e e e e eanaeees 7
3. WSIT Configuration and WS-POIICYcvvuniiiiicii e e e e 8
4. Configuring WSIT iNthe WED SEIVICEcvvuiii e e e 8
5. Building and Deploying the WED SErVICEuiiiiieii e e e e e 9
6. Configuring WSIT in the Web Service Clientcooviiiiiiiie e 9
7. Building and Running a Web Service ClIENtcoouiiiiiiiii e 9
8. UNdeploying aWED SEIVICEuiiie i 10

1. Overview

Supporting code samples are included to demonstrate building a web service using WSIT functionality.
The examples show how to develop aweb service both starting from Java source code and starting from
an existing WSDL document. For both cases, it shows how to develop a corresponding client application
from the web service's WSDL document. The examples can be found in the WSIT source tree here:

* From-Java example [download/wsit-enabled-fromjava.zip]
* From-WSDL example [download/wsit-enabled-fromwsdl.zip]
As you follow along with the sample code, please confirm that you are working in either wsi t - en-

abl ed-fronj ava or wsi t - enabl ed-fromasdl rather than one of the previous article's sample
code directories, wsi t - j axws-fronj avaorwsit-jaxws-fromasdl .

2. Prerequisites and Environment Configura-

tion

As in the previous article, the steps in this document require that you have aready installed the WSIT
jars into your web container. It also requires the following software be installed: JDK 6.0 Update
29 [http://www.oracle.com/technetwork/javaljavase/downloads/index.html] or later, Apache Ant 1.6.5
[http://ant.apache.org/] or later, and a web container: either Glassfish v3.x [http://glassfish.java.net/] or
Apache Tomcat 7.0 [http://tomcat.apache.org/]. Further, your Metro build environment needs to be con-
figured as described in the Environment Configuration Settings section of the previous article.

download/wsit-enabled-fromjava.zip
download/wsit-enabled-fromjava.zip
download/wsit-enabled-fromwsdl.zip
download/wsit-enabled-fromwsdl.zip
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
http://ant.apache.org/
http://glassfish.java.net/
http://glassfish.java.net/
http://tomcat.apache.org/
http://tomcat.apache.org/

Enabling Advanced Features
in aWeb Service Application

3. WSIT Configuration and WS-Policy

Advanced web service features are enabled and configured using a mechanism defined by the Web Ser-
vices Policy Framework [http://specs.xmlsoap.org/ws/2004/09/policy/] (WS-Policy) specification. A web
service expresses its requirements and capabilities via policies embedded in the service's WSDL descrip-
tion. A service consumer verifies it can handle the expressed requirements and, optionally, uses server
capabilities advertised in policies.

Technologies like Reliable Messaging, Addressing, or Secure Conversations, provides a set of policy as-
sertions it can process. Those assertions provide the necessary configuration details to the Metro run-
time to enable proper operation of these features used by a given web service. The assertions may spec-
ify particular configuration settings or rely on default settings that are pre-determined by the specif-
ic technology. For instance, in the snippet shown below, wsr m Acknowl edgenent | nt er val and
wsrm I nacti vityTi meout areboth optional and could be omitted. Thefollowingisan XML snippet
showing WS-Policy assertions for WS-Addressing and WS-Reliable M essaging:

Thissnippet would beequally validin either aWSI T configuration fileor aweb service'sWSDL document.

4. Configuring WSIT in the Web Service

4.1. Starting from Java

When devel oping aweb service from scratch or based on an existing Javaclass, WSI T features are enabled
using a configuration file. That file, wsi t - f r onj ava. server. AddNunber | npl . xm , iswritten
in WSDL format. An example configuration file can be found in the accompanying samples:

* wsit-enabled-fromjavaletc/wsit-fromjava.server. AddNumbersl mpl.xml [samples/wsit-enabled-fromja-
valetc/wsit-fromjava.server. AddNumbersimpl.xml]

The configuration file settings will be incorporated dynamically by the WSIT run-time into the WSDL it
generates for the web service. So when aclient requests the service's WSDL, the run-time will embed into
the WSDL any publically visible policy assertions contained in the configuration file. For the example
link above, the Addressing and Reliable Messsaging assertions would be part of the WSDL as seen by
the client.

Note

wsi t. xm must bein the EB- | NF sub-directories of the application's WAR file when it is
deployed to the web container. Otherwise, the WSIT run-time environment will not find it.

http://specs.xmlsoap.org/ws/2004/09/policy/
http://specs.xmlsoap.org/ws/2004/09/policy/
http://specs.xmlsoap.org/ws/2004/09/policy/
samples/wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml
samples/wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml
samples/wsit-enabled-fromjava/etc/wsit-fromjava.server.AddNumbersImpl.xml

Enabling Advanced Features
in aWeb Service Application

4.2. Starting from WSDL

When developing a web service starting from an existing WSDL, the situation is actually simpler. The
policy assertions needed to enable various WSIT technologies will already be embedded in the WSDL
document. Here is an example WSDL document in the accompanying samples:

* wsit-enabled-fromwsdl/etc/AddNumbers.wsdl [samples/wsit-enabled-fromwsdl/etc/
AddNumbers.wsdl]

5. Building and Deploying the Web Service

Once configured, a WSI T-enabled web service is built and deployed in the same manner as a standard
JAX-WS web service. If you are not familiar with those steps, please review the following sections from
Building a Simple Metro Application: Building a JAX-WS Web Service and Deploying the Web Service
to a Web Container. However, the URLs needed to verify the respective web services differ from the
previous article's examples and are listed below:

* http://local host:8080/wsit-enabl ed-fromjava/addnumberswsdl

* http://local host:8080/wsit-enabl ed-fromwsdl/addnumbers2wsdl

6. Configuring WSIT in the Web Service Client

Client-side configuration of WSIT functionality islargely automatic inthe WSI T environment. TheWSDL
document seen by the client will already contain the WSIT policy assertions. Those assertions describe any
requirementsfrom the server aswell asany optional featuresthe client may use. The WSIT build toolsand
run-time environment will detect the WSDL's policy assertions and configure themselves appropriately, if
possible. If an unsupported assertion isfound, an error message describing the problem will be displayed.

7. Building and Running a Web Service Client

As with the web service itsdlf, building and running a WSIT-enabled client application is identical to
running a standard JAX-WS client application. Those steps are described in the following sections of the
previous article: Building a JAX-WS Web Service Client and Running the Web Service Client. You can
expect to see output from the client similar to the following:

[java] I nvoki ng addNunbers(10, 20)

[java] The result of adding 10 and 20 is 30.

[java]

[java] Invoki ng addNunbers(-10, 20)

[java] Caught AddNunbersFaul t _Exception: Nunbers: -10, 20

[java] 12.1.2012 15:34:37 [comsun.xm .ws.rx.rmruntime.dientTube]
cl oseSequences

[java] I NFO WSRML157: Waiting for sequence
[uuid: 6ecc55a3-78cf - 4e8f-9b18-87f f a6f bb8b0] state change to [CLOSED] has
tinmed out after 3 000 nilliseconds

[java] 12.1.2012 15:34:40 [com sun.xm .ws.rx.rmruntime.dientTube]
cl oseRnBessi on

[java] INFO WSRML157: Waiting for sequence

[uui d: 6ecc55a3- 78cf - 4e8f - 9b18- 87f f a6f bb8b0] state change to

[TERMNATING] has tined out after 3 000 nilliseconds

samples/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl
samples/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl
samples/wsit-enabled-fromwsdl/etc/AddNumbers.wsdl
http://localhost:8080/wsit-enabled-fromjava/addnumbers?wsdl
http://localhost:8080/wsit-enabled-fromwsdl/addnumbers?wsdl

Enabling Advanced Features
in aWeb Service Application

8. Undeploying a Web Service

As described in Undeploying a JAX-WS Web Service, to undeploy a web service means to both disable
and remove it from the web container. This section provides the necessary commands to undeploy this
article's sample web services from both GlassFish and Tomcat.

8.1. Undeploying from GlassFish

asadm n undepl oy --user admi n wsit-enabl ed-fronjava
asadm n undepl oy --user adm n wsit-enabl ed-fromsdl

8.2. Undeploying from Tomcat

rm $CATALI NA_HOVE/ webapps/ wsi t - enabl ed- fronj ava. war
rm $CATALI NA_HOVE/ webapps/ wsi t - enabl ed- f r omwsdl . war

10

