Geomajas contributor guide

Geomajas Developers and Geosparc

Geomajas contributor guide
by Geomajas Developers and Geosparc

v17.1
Copyright © 2010 Geosparc nv

Table of Contents

1. Developers INFOMMELIONcieuue ettt e et et e e e e e e 1
maven compilation, targets, profiles, variables ..o, 1
GWT DU ..ttt e e et e eeera e e 1

OJO DU ... e et e e 1

Running the example appliCatioNnscouuuiieiiii e 2
DOCUMENEALION ...ttt ettt ettt ettt e et e et e et et e e et et e e e e eba s 2

L B0 1= o PP PTPPT 3
V4 £ o]0 1o o [PPSO PP 4
SUDVEISION, COMMIMITS ... etititii ittt et et et et et e e e e e et e e e e e e e e e e e e e an e e e an e e esneeneanannns 4

L6000 (1 o PP P TP OPPP 4
(oo o] oo E PSP TUPPTTRN 5

UNIT EESHING ettt e et e 5

EXCEPtion handlingoieeiiiii e 6
REFACIOMNG .. e ettt et ettt e e e et e e e eab e e eab e eees 6

FilE @NCOINGeeeetiee ettt 6

@)1= S U UPP PP PPPPPTRUPPIN 6

2. Coding QUALITY N0 SEYIE .. .ot 7
Class, method and variable NAMESc..iiiiiie e 7
10701101001 0| PP 8

ClaiM YOUP COOR ...ttt ettt e et e e 9

€00 TAYOUL ...ttt e et et e e et e e s 9

3. SPriNG USAGE IN GEOMEJES ... ceevvueeeetie ettt ettt e et e et e et et e e et e e e e et e e e e rb e e e ean s 12
Spring dependency INJECTIONiieiri e 12

Bean Naming CONVENTIONccouuuiiiiiii et e ettt e e e e e e e ena e eeens 12

Initialising the applicatioNCONIEXEeiiiiei e 13

4. FACE OF PIUGFIN et ettt e et e et e e e e een 14
PLUGFIN SEIUCTUNE ...ttt et e et e e b s 14
Plug-in appliCation CONTEXEvieeiiiieiiiii e 14

PlUG-IN WED COMEEXE ...ttt 15

PLUGFIN POM ettt ettt e e e 16

PIUG-IN MOTUIES ...ttt e e s 18

PLUGFIN CIBALTON ...ttt e et e e et e e b 18
PLUGFIN SEBEE ..ttt ettt e et e e e e et e e e 19
PlUG-IN Gradualionoieieiee e ettt e e e e e eeaas 19

PlUG-IN TELTEMENT ...ttt 20

5. JIRA CONVENLIONS ...ttt ettt ettt et e et r e et et e e et et e e et et neaeeaa s 21
BasiC iSSUE traCKEN TUIESuu it e et e e e eees 21

ONe ProbIem ONE ISSUEiiiii e e e 21

Provide a meaningful SUMMENYooiiiiiiiiiiii e e e 21

Provide a clear deSCriPliONcuuueiiiii e 21

Filling out the JIRA FOMMN ... e e e e e eees 21

6. Setting up your developmeNnt ENVIFONMENTuuuiriiiii ettt eeeanns 23
PrEIEOUISITES ...ttt ettt ettt et ettt e e e e 23
IVTBIVEIN . 23
SUDVEISION ..ttt ettt e et ettt 23

L€V PP P TR SPPPTTR 23

BUIIA PIrOCEAUIE ...t et e e e enees 23

ol [T o= OO SPPPTTRSPPRIN 24
LD B A ettt 25

= V7= o PP 26

7. HOW 1O FEl@8SE GEOMEIES ... eeeeti ettt ettt ettt e et e et eeeena s 27

Geomajas contributor guide

A. Geomajas Contributor LiCenSe AQrEEMENTueiiui e e e e e e e e e e e e e e e eaens 30
(D 11411 o] PSP 30
Granted Rights - REPIESENIALIONSuuivvieiiii i e e e e e e e e e e e e e e aaeeaens 30
WWBITANTIES ..o eveiee ettt e et e ettt e ettt e e et et e e e e ab e e e eaa e e e eatnnaeeeabneeeennns 32
TS ol T == o PP 32

Y Y= g I (= 001] (o YA 34

List of Figures

6.1. Hierarchical ProjeCt aYOULccoouuiiiiiii e 24
6.2. Command prompt after running 'mvn install’ ... 24
6.3. Eclipse project propertieS dialogvcevereieeiiiie e 25
6.4. Open Geomajas project (replace root directory with your OWN)coveveiiiieiiiiinneiiiineeeeee, 25
6.5. Project structure for SIMple GWT PrOJECEuiiiiiieiiiii ettt 26

Vi

List of Tables

1.0, 100GING TEVEIS ..o

Vii

List of Examples

4.1. Plug-in declaration in geomajasCONtEXE.XIMIuuuiiiiiiieiiiii e e e 15
4.2. geomajaswWebContext.xml for ResourceControlleruveiiiiiiieiiiii e 16
4.3. Create project using GWT Maven arChetYPeccvevuniiiiiiiie e 19
4.4. Create project using GWT Maven arCheyPeccvvvuiiiiii e 19

viii

Chapter 1. Developers information

maven compilation, targets, profiles, variables

When doing an initial compilation of Geomajas, you may need to start compilation from the "build-tools"
and then the "backend" directories. Only when these are compiled, compilation from the project root will

succeed.

cd build-tools
nmvn i nstal

cd backend

nmvn i nstal

cd ..

nmvn i nstal

The source contains one main pom which allows building of the Geomajas framework and each of the
sample applications in one go.

Y ou can aso choose to build them individually.
There are a couple of profiles defined which should help during development:

» - Dski pShri nk: do not use shrinking when building or using the dojo face. When not specified, a
shrinked version of the javascript filesis used. Thefilesare compressed and combined for faster loading
and better caching.

» -DskipDocs: do not build the documentation module. Can speed up the build alittle.

e -Df ul | - bui | d: from the root project, this enablesinclusion of the build tools and documentation in
the build. Thisis actually enabled by default (to desable use - Dhudson"),

» - Dhudson: profile for running the selenium integration tests on the hudson continuous integration
server. Aslong as running the tests on the ci server proves problematic, this will disable these tests.

GWT build

For faster compilation during testing (when not using development mode), it can be useful to compile
only for the browser used for testing. This will reduce the number of compilation steps by a factor 6.
Removing supported languages can further remove compilation steps. Include the following excerpt in
your Xxx. gwt . xmi fileto set your target browser.

<l-- set target browser to conpile for, use this tolimt to the browser used for
<l-- where value = "ie6/operal/ geckol 8/safari/gecko" , "geckol 8" is FireFox 3 -->
<set-property nanme="user.agent" val ue="geckol 8" />

dojo build

For development using the dojo face, apart from using the "-DskipShrink" setting mentioned higher, you
may also want to configure the ResourceController to try to directly read the javascript files from disk
before looking at the classpath (it also changes the cache headers). This allows a simple refresh in the
browser to load the changed versions. Y ou can configure this using ainit-param for the dispatcher servlet,
likein this example.

Developersinformation

<servl et>
<servl et - name>di spat cher </ servl et - nane>
<servl et -cl ass>org. spri ngf ramewor k. web. servl et . Di spat cher Servl et </ servl et-cl as
<init-paranp
<param nane>fil es-| ocati on</ param nane>
<par am val ue>/ hore/ me/ apps/j ava/ geomnj as/ geomaj as/ geomaj as- doj o-client/src
<descri pti on>
VWhen this is specified, files are searched here first.
Files which are found at this |ocations are not cached.
</ descri pti on>
</init-paranp
<init-paranp
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>cl asspat h*: META- | NF/ geomaj as\WebCont ext . xm </ par am val ue>
<descri pti on>Spri ng Wb- WC specific (additional) context files.</descript
</init-paranp
<l oad- on- st art up>3</ | oad- on- st art up>
</servlet>

Running the example applications

Once you have done a"mvn i nst al | " on either the entire tree or the "Geomajas" directory, you can
use maven to run the example applications.

For the dojo face, you can run the examples using (when in the geomajas-dojo-example directory)
m/n jetty:run

For the gwt face, you have two options. Once in the geomajas-gwt-simple directory, you can run the
application in development mode using

m/n gw :run
Note

Due to classpath problems and the gwt-maven-plugin which does not properly handle excluded
dependencies (the "provided" scope), this can fail on some systems.

Alternatively you can run the actual war using
nvn jetty:run-war
Note

It can be advisable to run "mvn clean" between "gwt:run" and "jetty:run-war" or the classpath
problem from the previous footnote may appear again.

Documentation

The general documentation is split in three books.
* developers guide: guide for developer who want to use Geomajas in their application.

« contributors guide: guide for people who want to contribute to the project or want to know more about
the functioning of the project (this one).

Developersinformation

 end user guide: documentation for end users of applications built using Geomajas.
Apart from that, each face and each plug-in has their own documentation.

All documentation iswritten in docbook format to alow both PDF and HTML output formats. The sources
can be found in the "documentation” directory of the project.

For editing the docbook files, we recommend using XMLMind [http://www.xmImind.com/xmleditor/].
Thepersona versionisfreeand can (at the time of writing) be used for editing open source documentation.

The docbook files are currently formatted using XMLMind. When using another tool for editing, please
keep the current formatting to assure diffs remain usable.

The documentation includes a lot of examples which are excerpts from the source of the example
applications. This prevents copy-paste mistakes. The build process for the documentation automatically
updatesthese excepts. Thedirectorieswhich haveto be scanned for excepts are specified in the pom. When
thisincludes code which is not in the current versioned entity (the root directory for the face or plug-in),
then the source needs to be obtained from a dependency and unpacked. Excerpts can be annotated using
annotations like

<l-- @xtract-start AllowAll Security, Allow full access to everybody -->

<bean nanme="security.securitylnfo" class="org.geongjas.security. Securitylnfo">
<property nane="| oopAl | Servi ces" val ue="fal se"/>

</ bean>

<l-- @xtract-end -->

for XML or

/Il @xtract-start filenane, title

for (String line : lines) {
/1 do sonething

}
// @xtract-end

for javafiles. The start annotation includes the filename which should be used (al files are placed in the
"listing" directory) and optionally atitle for the example.

APl contract

The Geomajas project has a very strong APl contract. To assure the project adheres to this contract, we
have the following requirements,

* NO API classes or interfaces may be removed.

» No API classes or interfaces may be renamed.

* No API classes or interfaces may have their package name modified.

* No APl methods may be removed.

* No APl methods may have their signature changed.

» No methods may be added to classes annotated using "@Jser | npl enent ed".

e Each classon which a"@Api" annotation is added should have a" @since" javadoc comment.

http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com/xmleditor/

Developersinformation

» Each method on which a"@Api" annotation is added should have a" @since" javadoc comment.

» Each public method which is added in a class which is annotated with "@Api(alMethods = true)”,
should have a" @since" javadoc comment.

The checkstyle configuration which isused for the project (which is defined in the geomajas-parent parent)
tries to check the API contract. This required a api.txt file in src/main/resources which contains the API
for the previous release version. The API for the compiled version is put in target/api.txt.

Notethat apart from the class and method signatures, the behaviour should also remain constant (especially
when documented or tested). Just keep a method and throwing Not | npl enent edExcept i on cannot
be considered "maintaining a stable API".

Versioning

Version have a major.minor.patch structure.

» major: indicates that this rel ease has major advances over previous rel eases. New major versions do not
need to be backwards compatible.

» minor: indicates that there are important new features that do not break compatibility with previous
versions with the same major number. Even minor versions are used for "stable” versions which will be
supported by Geosparc. Odd minor versions are used for work-in-progress and stabilisation efforts.

* patch: bugfixes and smaller improvements.

subversion, commits

New committers need to sign an agreement which hands over copyright to Geosparc. Policies are needed
for assigning commit rights (see below).

All SVN commits should include the JIRA issue number at the start of the commit message, and a short
description of the work done. The JIRA issue number allows linking the commits with the issues (as can
be seen in JIRA), the short message allows persons to know what is happening without referring to JIRA.
The only times JIRA issue number are not needed is for making "obvious' changes like fixing typos.

Commits should be grouped by issue as much as possible/sensible (better two commits than one commit
for fixing two issues, better one commit of five files than five commits of onefile (for one issue)).

Development of the "latest-and-greatest” version happensin "trunk”.

Continued development on earlier versions (when not "latest-and-greatest") occur in branches with the
future version number as name.

When arelease is cut, atag with the release version as name is created. The release should be built from
the tagged files.

After each commit, the system should still compile and all test cases should still succeed. There is a
continuous integration engine (Hudson) which verifies this and send messages to the commit mailing list
on failures.

Coding

Note that details about coding style and naming are on the coding style [??7] page.

???
???

Developersinformation

Logging

» When inserting debug statements, parameterized messages should be used to prevent the need/
usefulness of i sDebugEnabl ed() .

« al logging is done through sIf4f, logger is created using
private final Logger |og = LoggerFactory. getlLogger(Containi ngC assNane. cl ass);

* logging levels

Table 1.1. logging levels

log level default on use

ERROR yes major problems, should always
bevisibleinlogsand arelikely to
require action from a person (to
fix the condition or assure it does
not happen again). Indicates that
something is seriously wrong.

WARN yes warhing about potential
problems. Should aways be
visible in logs and a person will
probably need to assess whether
this is harmless or should be
treated as an error.

INFO yes important information. You can
assume this level is on in
production, so it should be
carefully considered whether this
level is appropriate. In genera
only used to indicate service
status (started, stopped).

DEBUG no logging information which is
detailed enough to know what is
happening in the system, without
flooding the logs.

TRACE no very detailed logging, probably

only making sense to the
developer of the code.

» When an exception is caught and (another exception) thrown you should not log the exception. You
should however include the cause in the newly thrown exception.

Unit testing

Unit testing: At least each class implementing the public API should have a unit test, testing all methods.
For testing JUnit is used.

» Advantages of unit testing:

e Capturing a JRA [http://jira.geomajas.org/] bug report in a reproducible manner.

http://jira.geomajas.org/
http://jira.geomajas.org/

Developersinformation

 Allowing you to specify exactly the behaviour you want, before you start coding.
» How unit testing should be done:
* If you aretesting src/main/javalorg/geomajas/ToBeT estedClass.java, create a class src/test/javalorg/
geomajas/ToBeTestedClassTest.java. Actua test methods have aname starting with "test”. The class
itself should extend jnit.framework.TestCase.

e Thetest will automatically be run whenrunning "nvn i nstal | ".

* Integration tests should also be provided. These can aso be used for testing the user interface (thanks
to selenium).

Exception handling

Never throw away exception, either log them or throw them again (possibly wrapped). Do not log and
throw, this only clutterslog files with duplicate exceptions.

Do not wrap exceptions unnecessarily (so no Geommj asException caused by a
Ceonmj asExcept i on) unlessyou add additional information in the message.

When wrapping an exception, always include the cause.

Refactoring

Changesin the (public) API use a"deprecate, then remove" cycle. It should be marked "deprecated” in at
least one minor version before it can be removed in the next major version.

File encoding

All sourcefiles, including .properties files should use UTF-8 encoding.

Other

For the directory structure and file locations, we follow standard maven conventions (see http://
maven.apache.org/guides/introducti on/introducti on-to-the-standard-directory-layout.html).

Chapter 2. Coding quality and style

As a general note, the coding style and naming conventions should be adhered to. Some parts are even
checked by the checkstyle maven plug-in. However, deviations are always allowed when this enhances
code readability.

Formatters are available for the style as described here (see bottom of document). You can be libera
on applying this on new code, but be prudent when applying these to the existing code base. Code style
changes make revision changesalot more difficult and should thus belimited. If thereisaneed to reformat
existing code, then this should be done in a separate commit.

Class, method and variable names

Rules
* Use meaningful names. Especially class and method hames should explain their purpose.

* For class, method and (non-static) variable names, use camel Caseto separate thewords, not underscores.
For abbreviations, capitalize he first |etter, lower case for the others.

* Class names start with a capital, for example "CommandDispatcher".

» Method and (non-static) variable names start lower case, for example "getEmptyCommandResponse”.
 All static variables should have capitalized names with words separated by underscores.

» Package names are all lower case and should be singular.

o Use get/set/isXxx.

» Abbreviations and acronyms should not be uppercase when used as name (for example, use
"exportHtmI()").

« All names should be written in English.
» Theterms get/set must be used where an attribute is accessed directly.

* "is" prefix should be used for boolean variables and methods. In some cases, when thisis more readable,
"has", "can" or "should" can also be used as prefix.

» Complement names must be used for complement entities. These include get/set, add/remove, create/
destroy, start/stop, insert/delete, increment/decrement, old/new, begin/end, first/last, up/down, min/
max, next/previous, old/new, open/close, show/hide, suspend/resume, etc.

* Exception classes should be suffixed with Exception.

Recommendations

» Usually class names are nouns and method names are verbs.

» Generic variables should have the same name as their type.

» Variableswith alarge scope should havelong names, variableswith asmall scope can have short names.
Scratch variables used for temporary storage or indices are best kept short. A programmer reading such

Coding quality and style

variables should be able to assumethat its value is not used outside afew lines of code. Common scratch
variables for integers arei, j, k, m, n and for characters ¢ and d.

» The name of the object is implicit, and should be avoided in a method name. For example, use
"line.getLength()" instead of "line.getLineLength()". The latter might seem natural in the class
declaration, but proves superfluous in use, as shown in the example.

» Theterm compute can be used in methods where something is computed.
» Theterm find can be used in methods where something is looked up.

» Theterm initialize can be used where an object or a concept is established.
 Plural form should be used on names representing a collection of objects.
» Negated boolean variable names must be avoided.

» Default interface implementations can be prefixed by Default. However, if it is not expected that there
will even be another implementation, it can be alot more natural to suffix with "Impl" instead.

* Singleton classes should return their sole instance through method getlnstance, should have a private
constructor and be declared final.

 Functions (methods returning an object) should be named after what they return and procedures (void
methods) after what they do.

 Datatransfer objects sometimes exist in two flavors, one which contains the Geomajas geometry dto's
and one which contains JTS geometry objects. In that case, the variant with the geometry dto's should
use the natural name, and the variant with JTS geometry objects should have a class name which has
the "JG" suffix (JG stands for Js Geometry).

Comment
Each file should have the correct copyright notice at the start of thefile.

/
This file is part of Geommjas, a conponent framework for building

rich Internet applications (RIA) with sophisticated capabilities for the
di spl ay, analysis and managenent of geographic information.

It is a building block that all ows devel opers to add maps

and ot her geographic data capabilities to their web applications.

Copyri ght 2008-2010 Geosparc, http://ww. geosparc.com Bel gi um

This programis free software: you can redistribute it and/or nodify
it under the terns of the GNU Affero General Public License as
publ i shed by the Free Software Foundation, either version 3 of the
Li cense, or (at your option) any |ater version.

This programis distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; wi thout even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the
GNU Affero CGeneral Public License for nore details.

You shoul d have received a copy of the GNU Affero General Public License
along with this program |If not, see <http://wwmv. gnu.org/licenses/>.

E o R T T B S N T N R R O S T T

Coding quality and style

*/

Note that the end year (shown hereis 2010) should always be the current year. All headers will be updated
at the beginning of each year.

» The copyright message should be at the top of the file. However, for jsfiles, it is allowed to have the
"dojo.provide" line above the copyright as this helps for debugging.

» Each class and interface should have class comments indicating the purpose of the class.

* Public methods should be commented if the meaning is not entirely clear from method and parameter
names (is it ever?). When the method overrides or implements a method, then repeating the javadoc
is not needed.

« Commentsin the code are recommended when they explain a block of code or when they explain why
things are done in a certain way. Repeating the code in human readable wording is wasteful.

» Use"@todo" comments to indicate shortcuts or hacks which should be fixed. Better still isjust to do
it right and not have the shortcut.

 All comments should be written in English.
» Comments should be indented relative to their position in the code.

 Javadoc comments should be active, not descriptive (for exampe on method "getXxx()" the comment
could be "Get xxx™).

 All classes and interfaces need javadoc class comments.

 All classes and interfacesin the geomajas-api module need full javadoc comments on all methods.

o All classes, interfaces and methods which have a "@\pi " annotation needs a "@i nce" javadoc
comment to indicate the version in which the class or method was added. This is also the case for
methods which are added in classeswith "@Api (al | Met hods = true) " annotation.

Claim your code

Be proud of your code and take responsibility of your changes. When making any kind of significant
changes (not for reformatting, fixing typing errors or renaming), add your full name at the bottom of the
authors list in the class comments.

Code layout
See the example below
/*
* This file is part of CGeommjas, a conponent franmework for building
* rich Internet applications (RIA) with sophisticated capabilities for the
* di splay, analysis and managenent of geographic information.
* It is a building block that allows devel opers to add maps
* and ot her geographic data capabilities to their web applications.
*
* Copyright 2008-2010 Geosparc, http://ww. geosparc.com Bel gi um
*
*

This programis free software: you can redistribute it and/or nodify

Coding quality and style

it under the terns of the GNU Affero General Public License as
publ i shed by the Free Software Foundation, either version 3 of the
Li cense, or (at your option) any |later version.

*

*

*

*

* This programis distributed in the hope that it will be useful,
* pbut W THOUT ANY WARRANTY; w t hout even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the
* GNU Affero CGeneral Public License for nore details.

*
*
*
*

You shoul d have received a copy of the GNU Affero General Public License
along with this program |If not, see <http://wwmv. gnu.org/licenses/>.
/

package org. geonmj as. bl adi bl a;

/**

* Short description of the purpose of this class.
*

* @ut hor Author's nane

* @ut hor Anot her Author's nane

*/

@\nnot ati on(param. = "val uel”, paran? = "val ue2")
public class Foo inplenments Serializable {

int[] x = newint[] {1, 3, 5 6, 7, 87, 1213, 2};

/**

* Do somet hi ng

*

* @aram x sonme data
* @aramy nore data

*/
public void foo(int x, int y) throws Exception {
for (int i =0; i <x; i++) {
y += (y N 0x123) << 2;
}
do {

try {
if (0 <x & x < 10) {
while (x I=vy) {
x =f(x * 3 + 5);

} else {
synchroni zed (this) {
switch (e.getCode()) {

...
}
}
}
}
catch (MyException e) {}
finally {

int[] arr = (int[]) 9(y);
Xx =y >07?arr[y] : -1;

10

Coding quality and style

}
}
while (true);

The code is written with the right margin at 120 characters and lines should not be longer than that if
possible.

Tabs should be used for all indents. We assume atab is four spaces for determining line length.
When lines are split because they are too long, a double indentation should be used.

Opening braces on the same line as the declaration/for/if..., so not aligned with the closing brace.
No spaces inside brackets.

Spaces around operators.

No wildcards allowed on import statements.

Always a space before braces.

Always use braces (and thus multiple lines) for if, while, do-while.

Array specifiers must be attached to the type not the variable.

Class variables should never be declared public.

Logical units within ablock should be separated by one blank line.

We have both an eclipse[geomajas_formatter.xml] and IntelliJ IDEA [geomajas.xml] formatter which can
be used. However, be careful not to change the entire formatting of a class.

11

geomajas_formatter.xml
geomajas_formatter.xml
geomajas.xml
geomajas.xml

Chapter 3. Spring usage in Geomajas

Spring dependency injection

Bean

To assure the spring dependency injection is used, you should obtain beans through either injection
(possibly autowiring) or the application context. When you directly instantiate classeswhich require spring
dependency injection, you are likely to encounter NullPointerException or other problems.

@onponent
public class Myd ass {

@\wut owi red
private ApplicationContainer applicationContainer;

public void myMethod() {
Conmand conmmand = appl i cati onCont ext. get Bean("control |l er.general

We recommend using the annotations when possible.

Y ou cannot assume that (auto) wired services are initialized while the application context is being built.
If you need to do some initialization of the bean state, this should be removed from the setters which are
called while building the context, and moved to a post construct method.

@ost Construct

private postConstruct() {
// donme sone stuff here

}

naming convention

Bean names match the (fully qualified name of the) interface they implement if there is only one
implementation to be used. When this is not the case, the bean name is the (fully qualified) classname.
When the bean name starts with "org.geomajas.”, this is cut off. Interfaces which are expected to have
several alternate implementations should be annotated with the " @ExpectAlternatives' interface.

Thereis a"GeomajasBeanNameGenerator" class which tries to automatically determine the bean names,
assuring that you don't need to mention thisexplicitly inthe" @Component™ annotation. If thefirstinterface
which is implemented by the class does not have the " @ExpectAlternatives' annotation, then the fully
qualified name of the first interface is used as bean name. For all other beans, and for beans which are
in a "command" package and don't have a class name starting with "Default" the fully qualified class
name is used. In al cases the bean name has the "org.geomajas." prefix removed is present (using the
"GeomajasBeanNameGenerator.simplify()" method.

Note that these rules are built to easily replace instantiation based on class names by instantiating based
on bean names. For the same class hame, you can often replace the code

Cl ass. for Nanme(cl assNane) . new nst ance() ;

by

. LogComman

appl i cati onCont ext . get Bean(Geonnj asBeanNaneGener at or. si npl i fy(cl assNane));

12

Spring usage in Geomajas

Initialising the applicationContext

For servlets, you can use the GeomajasContextL istener in the web.xml file.

<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
<web- app>
<di spl ay- name>CGeonnj as appl i cati on</di spl ay- nane>
<cont ext - par anp
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>cl asspat h: / mypackage/ shapei nnem *. xm </ par am val ue>
</ cont ext - par an®

<listener>
<l i st ener-cl ass>org. geongj as. doj 0. server. servl et. Geomaj asCont ext Li st ener <
</listener>

The "contextConfigLocation” context-param alows you to specify additional application context
definition files. These will be included after the built-in Geomajas file and the configuration which is
contributed by the available plug-ins. Y ou can include several files by separating them using whitespace.
Each location can include the protocol/location used to find the file. When no protocol is specified, the
fileis searched on the class path. Ant-stylewild cards can be used. The following are examples of allowed
patterns:

coni nyconpany/ **/ appl i cati onCont ext . xm
file:C/some/path/*-context.xm

cl asspat h: conf mnyconpany/ **/ appl i cati onCont ext . xm
cl asspat h*: conf/ appCont ext . xm

:/ VEEB- | NF/ * - cont ext . xnl

The classpath* pattern is specific in that it will combine all the resources that match this exact patternin
the classpath, not just the first one.

When the GeomajasContextListener is used, the application context can be obtained in the servlet using

public void init(ServletConfig config) throws Servl et Exception {
Appl i cati onCont ext applicati onContext = Applicati onContextUtil.getApplicationC

When using another way to define the application context, you haveto make sureto include " org/geomajas/
spring/geomajasContext.xml" (classpath resource, from the geomajas-impl module), and all the "META-
INF/geomajasContext.xml" (classpath resource, configuration for the plug-ins).

13

Chapter 4. Face or plug-in

Geomajasisan extensible frameworks which can be extended by including additional plug-inson the class
path when the application is started.

Some of the possible extensions include
* adding security services.

* providing specific rendering pipeline which modify the default rendering.

additional services which may be used (also by by other plug-ins), for example printing support.

a different face (in principle a face is just another plug-in, the term "face" is used when the plug-in
produces data or makes data available to the outside world).

» accessto akind of data store (these are referred to as "layer” plug-ins, they consume data).

Plug-in structure

Some conventions are in use to make plug-ins easily accessible and auto-register, and to make plug-ins
good citizens of the Geomajas project.

Plug-in application context

Each plug-in can have a configuration file in META-| NF/ geonaj asCont ext .xml which is
automatically included in the application context (after themain geomaj asCont ext which comesfrom
thei npl module, but before al files which are explicitly added (throughweb. xmi)).

This context file should at least declare the plug-in, the plug-ins and dependent version it depends on, and
the copyright and/or license information for all other dependencies. It also hasto indicate the API version
which isused. Thisisaso version which is used for the back-end (which includes the API) which is used
in the pom. Assuming this compiles and that you only used

The dependencies are used to check compatibility of the plug-in with the back-end and required plug-ins.
If you only access them using the AP, this should assure that everything stays compatible.

14

Face or plug-in

Example 4.1. Plug-in declaration in geomajasContext.xml

<bean cl ass="org. geomnj as. gl obal . Pl ugi nl nfo" >
<property nane="version">
<bean cl ass="org. geonsj as. gl obal . Pl ugi nVer si onl nf 0" >
<property nane="name" val ue="Pl ug-in name" />
<property name="version" val ue="${project.version}" />
</ bean>
</ property>
<property nane="backendVersion" value="1.7.1" />
<property nane="dependenci es" >
<list>
<bean cl ass="org. geonnj as. gl obal . Pl ugi nVer si onl nf 0" >
<property nane="name" val ue="Static security" />
<property nane="version" value="1.7.1" />
</ bean>
</list>
</ property>
<property nane="copyri ghtlnfo">
<list>
<bean cl ass="org. geonnj as. gl obal . Copyri ght |l nfo">
<property nane="key" val ue="Geomsj as"/>
<property nane="copyright" value="(c) 2008-2010 Geosparc nv"/>

<property nane="licenseNane" val ue="GNU Affero General Public Lice
<property nane="licenseUr|" value="http://ww.gnu.org/licenses/agp
</ bean>

<bean cl ass="org. geonnj as. gl obal . Copyri ght | nfo">
<property nane="key" val ue="Apache comons"/>
<property nane="copyright" value=""/>

<property nane="licenseNane" val ue="Apache License, Version 2.0"/>
<property nane="licenseU|" value="http://ww. apache. org/licenses/
</ bean>
</list>
</ property>

</ bean>

You can add any other configuration which is necessary in this file, for example configure pipelines,
register services.

Note that when adding dependencies, you should run dependency:tree (or similar) to check for sub-
dependencies and assure the copyrightinfo list remains complete with copyright and license details for
the dependent libraries.

Plug-in web context

Each plug-in can have a configuration file in META- | NF/ geomaj asWebCont ext . xm which is
automatically included in the web context for the dispatcher servlet. Thisisused to allow plug-insto define
additional web endpoints without the need to define servlet entriesin web.xml.

The DispatcherServlet allows use of Spring MV C for defining your controllersand views. Any definitions
which are specific to the web tier, should be put in the web context file. The services which are defined
in the application context can also be used.

15

Face or plug-in

A typical context will definethe packageto scan (notethat if the package which containsthe controllerswas
already scanned in geomajasContext.xml, you will still need to redeclare the scanning to allow controllers
to be picked up). The example context as used for the ResourceController looks like this:

Example 4.2. geomajaswWebContext.xml for Resour ceController

<beans

xm ns="http://wwmv. springfranmework. org/ schema/ beans”

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"

xm ns: cont ext ="http://wwmv. springfranework. org/ schema/ cont ext"

xm ns:util="http://ww.springfranework.org/schema/util"

Xxsi : schermaLocat i on="
htt p: // www. spri ngf ramewor k. or g/ schema/ beans http://ww. spri ngframewor k. or g/ schema/
htt p: // ww. spri ngfranmewor k. or g/ schema/ cont ext http://ww. springframework. org/ schen
http: //wwv. spri ngfranmewor k. org/ schema/util http://ww. springfranmework. org/schena/u

<cont ext : component - scan base- package="or g. geonaj as. servlet"/>

</ beans>
Plug-in pom
The pom needs to be complete to allow proper release of the plug-in.
The following sections need to be filled in:
e description
e scm
* organization
» mailinglists
* licenses
* issueManagement
» ciManagement
* developers
* repositories
* pluginRepositories
The build should aso include the following settings
* properties should contain "<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>".
« thefollowing compiler build plug-in declaration should be used:
<pl ugi n>

<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>

16

Face or plug-in

<confi guration>
<encodi ng>ut f 8</ encodi ng>
<sour ce>1. 5</ sour ce>
<t arget>1. 5</target >
</ configuration>
</ pl ugi n>

» The checkstyle plug-in should be activated, using the latest Geomajas style.

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven- checkstyl e-plugin</artifactld>
<versi on>2. 5- DF</ ver si on>
<confi guration>
<confi gLocati on>confi g/ geomaj as- checkstyl e. xm </ confi gLocati on>
</ configuration>
<executions>
<execution>
<phase>veri fy</ phase>
<goal s>
<goal >check</ goal >
</ goal s>
</ executi on>
</ executi ons>
<dependenci es>
<dependency>
<gr oupl d>or g. geomaj as</ gr oupl d>
<artifactld>geonsj as-checkstyl e</artifactld>
<versi on>1. 0. 4</ ver si on>
</ dependency>
</ dependenci es>
</ pl ugi n>

e A sourcejar should be produced.

<pl ugi n>
<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-source-plugi n</artifactld>
<version>2. 1. 2</versi on>
<executions>
<execution>
<goal s>
<goal >j ar </ goal >
</ goal s>
<confi guration>
<i ncl udePon®t r ue</i ncl udePon®
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>

» Thejar should include indexes.

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>

17

Face or plug-in

<artifactld>maven-jar-plugin</artifactld>
<confi guration>
<archive>
<mani f est >
<addDef aul t | npl ement ati onEntri es>true</ addDef aul t | npl enent ati onE
</ mani f est >
<mani festEntri es>
<geommj as- ver si on>${ pr oj ect. ver si on} </ geonsj as- ver si on>
<l i cense>ACGPLv3</|icense>
<nmor e-info>http://ww. geomaj as. org/ and http://ww. geosparc. coni :
</ mani festEntri es>
<conpr ess>t rue</ conpr ess>
<i ndex>t r ue</ i ndex>
</ archi ve>
</ configuration>
</ pl ugi n>

Many of these requirements can be met by inheriting from the geonaj as- par ent project.

Plug-in modules

All plug-ins consist of at least two modules, possibly more.

Of module contains the documentation for the plug-in in docbook format. A template module is generated
when you use the geonsj as- pl ugi n- ar chet ype.

The actual work should be done in one or more modules. Y ou need more than one module when there is
face specific code in the plug-in.

Plug-in creation

To add a plug-in to the Geomajas project, you should write a proposal which is sent to the Geomajas
developers mailing list (majas-dev). It will be discussed and once some kind of consensus seems to be
reached, you can initiate a vote to alow creation of the plug-in. The vote should contain the following
details

* plug-in name

plug-in lead
 genera description
* technical description

If the persons devel oping the plug-in don't have commit rights yet, they can get adirectory in the sandbox
(apart of our version control system) where they can prove their skills until they get full commit rights.

When the vote is accepted and commit rights are in place, the plug-in can be moved to trunk and a jira
modul e and continuousintegration can be set up. The module should also be added to the aggregate.sh file
(which assures all documentation can be found in one place), and it should be added in the geomajas-dep
pom (until the first release, it should be commented in that file).

To start the actual coding, we have provided a plug-in archetype which can be used using the following
command line (to use the latest rel ease):

18

Face or plug-in

Example 4.3. Create project using GWT Maven ar chetype

nmvn ar chetype: generate -DarchetypeCatal og=http://apps. geongj as. or g/ nexus/ content/g

Alternatively, you can use the very latest (snapshot) archetype using the following command.

Example 4.4. Create project using GWT Maven ar chetype
nmvn ar chetype: generate -DarchetypeCat al og=http://apps. geonsj as. or g/ nexus/ content/g

Y ou first have to sel ect the archetype you want to build (geomajas-plugin-archetype). Then it will ask you
the"groupld", "artifactld", version and base package. Once you confirmed the settings, the project will be
created in a sub-directory with aname equalling the "artifactld" you choose.

Plug-in state

A Geomajas plug-in has a"state" which indicates the maturity.
* incubating: work-in-progress plug-in which has not reached graduation criteria yet.

 graduated: the plug-in is considered stable, development is active and there is sufficient documentation
to be usable and testing to prove it works.

* retired: t he plug-inisno longer maintained. It can be deprecated or development just stopped for some
reason. Both graduated and incubation plug-ins can become retired, so this does not give an indication
of quality.

All plug-ins start at in the incubating state.

Plug-in graduation

The process for a plug-in to move state from incubation to graduated, is called graduation. In order for a
plug-in to graduate, severa criteria need to be met.

Thefollowingisalist of plug-in graduation criteria:

A plug-in requiresamaintainer. Thisisthe contact-person for the plug-in. He should watch the mailing
lists and be available for user questions.

 All code should oblige to the programming rules as laid out in the Geomajas contributor guide (code
style, javadoc, check-style, author tags, ...).

* A check must be madeto assure al dependencies of the plug-in have their licenses respected. Examples
of issuesto consider are compatibility of thelicense (with the AGPL licensefor the modul€) and possible
copyright/license display requirements. All the relevant information needsto be supplied inthe META-
INF/geomajasContext.xml file for the plug-in.

« Iftheplug-inisaface, thecopyrightinformation for all plug-insneedsto beincluded inthe user interface
(for examplein an "about" box).

» There must be enough documentation for users to easily start using the plug-in without having to ask
the basic questions and the documentation needs to be in the expected location and format (to allow
inclusion in project documentation).

» There must be enough tests available to prove code stability.

19

Face or plug-in

Graduation is an all-or-nothing process. A plug-in either meets al criteria, or it does not. The plug-in
maintainer can propose to graduate a plug-in on the majas-dev mailing list. When there is community
agreement onthe proposal, he or shecaninitiateaPSC vote. A request for graduation can only be vetoed by
including the steps which need to be taken to graduate. Once these steps are taken, the plug-in maintainer
can again propose to graduate.

Plug-in retirement

Plug-in retirement is also handled by a PSC vote. Thiswill typically happen when aplug-in is deprecated
(focus movesto adifferent plug-in which supersedes the retired one), or when a plug- in maintainer wants
to quit without having someone to follow up. However, anyone can propose to retire amodule. Thiswill
normally be denied if the plug-in maintainer is still actively maintaining the module.

Both incubation and graduated plug-in can become retired. Reactivation of aretired plug-in, is of course
possible when anew maintainer can be found. In this case the plug-in becomes an incubation plug-in again
(and the maintainer must have signed a CLA).

20

Chapter 5. JIRA conventions

Basic issue tracker rules

One problem one issue

When you report a problem, please submit one issue per problem. There are various reasons for this,
amongst them:

» Themore crowded an issueis, the more likely isit that some problems may get lost over time.

« Different problems are likely to be handled by different people. The more problems you put into the
issue, the more difficult is thisissue to handle for al involved parties.

In particular, if you're going to write sentences like "Besides this, | noticed that" or "There are severa
problems with....", then please seriously ask yourself whether you should submit multiple issues instead
of asingle one.

If you don't follow this rule, be prepared for people asking you to split up your issue.

Provide a meaningful summary

Providing a meaningful summary helps the committers to easily recognize an issue in alist of dozens of
others. Since duplicate issues are draining alot of work from committers, you should always check if the
issue you wish to report hasn't already been reported. Of course this works best if the summaries of the
existing issues are as descriptive as possible.

Provide a clear description

Y ou, asthe submitter of a problem, know exactly what you were doing when you were hit by the problem.
However, most other people probably don't. For instance, they may have a completely different workflow
for doing the same things you are doing.

In order to prevent committers to have to ask back how exactly an issue can be reproduced, it is the task
of theissue's submitter to be as clear on this as possible - preferably by given a step-by-step description.

Filling out the JIRA form

In order to create a new issue, you need to log in to the JIRA issue tracker [http://jira.geomajas.org/].
When creating anew issue, the first thing you will be asked, isto select the project and issue type:
 Project: the project you wish to report an issue for. (usually Geomajas)

* Issue Type: the type of issue you want to report. Isit a bug, task or simply a question? Please be correct
in this.

Then a new form appears with new fields to fill in. The summary and description have been discussed

earlier. Asfor the other fields:

e Priority: how urgent istheissue? Thisvalue can always be changed by the Geomajas committersif they
feel that the priority does not match the issue'simpact.

21

http://jira.geomajas.org/
http://jira.geomajas.org/

JIRA conventions

Due date: not used

Components. What component do you think the issue relates to? Not necessary to fill thisin.
Affectsversion: In what version of Geomajas did you encounter the issue?

Assignee: Assign the issue to someone you believe is best suited to fix the issue.

Therest is not used.

22

Chapter 6. Setting up your
development environment

Prerequisites

Maven

Geomajas is uses the Apache Maven project management tool for its build and documentation
process. Maven can be downloaded from the Apache project site: http://maven.apache.org [http:/
maven.apache.org] Installing Maven is quite smple: just unzip the distribution file in the directory of
your choice and make some environment changes so you can access the executable. More information
for your specific OS can be found at the bottom of http://maven.apache.org/download.html [http://
maven.apache.org/download.htmi]

Subversion

GWT

Build

Geomajas uses subversion as its version control system. Accessing subversion requires you to at least
install a compatible client. There are numerous client solutions available, some as standal one clients and
some as IDE plug-ins:

» Tortoise SVN: an excellent SVN client for Windows (http://tortoi sesvn.tigris.org/)

» Subversive: Eclipse plug-in, can be found on the following Eclipse update site (http://
download.eclipse.org/releases/galileo [http://download.eclipse.org/releases/galileo] > Collaboration
Tools)

 Subclipse: Eclipse plug-in, can befound on thefollowing Eclipse update site (http://subclipse.tigris.org/
update 1.6.x [http://subclipse.tigris.org/update 1.6.x])

* IDEA SVN plug-in (part of the default IDEA installation)

The Geomajas repository can be found at https://svn.geomajas.org/majas. The standard SVN repository
layout is followed: trunk, tags and branches. For the latest and greatest code (including GWT face) you
should check out the trunk:https://svn.geomajas.org/majas/trunk.

The GWT (Google Web Toolkit) software development kit (SDK) should be downloaded from
the Google site: http://code.google.com/webtool kit/download.html [http://code.google.com/webtoolkit/
download.html]. After downloading you should unzip it in adirectory of choice.

procedure

Start by recursively checking out the trunk directory to anew local folder with aname of your choice (e.g.
geomajas-trunk). Y ou will see that the source code layout follows the recommended hierarchical layout
structure for multimodule maven projects:

23

http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://tortoisesvn.tigris.org/
http://download.eclipse.org/releases/galileo
http://download.eclipse.org/releases/galileo
http://download.eclipse.org/releases/galileo
http://subclipse.tigris.org/update_1.6.x
http://subclipse.tigris.org/update_1.6.x
http://subclipse.tigris.org/update_1.6.x
https://svn.geomajas.org/majas
https://svn.geomajas.org/majas/trunk
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html

Setting up your
development environment

Figure 6.1. Hierarchical project layout

File 2
Qe -) - T ‘) seach ‘ll Folders |E|~
Address [Cigeomajas-trunk. =l

Folders

Build the code by running the install command on the pom in the top directory:

geomnmj as-t r unk> mvn install

Figure 6.2. Command prompt after running ‘mvn install'

The install procedure will build all code, run all unit tests and install the artifacts in the repository.
Integration tests based on Selenium will also be run.

Eclipse

Eclipse project configurations can be generated using the maven Eclipse plug-in. Thisrequires you to run
the following command:

geonsj as-t r unk> mvn eclipse eclipse

After the command has completed, Eclipse project definitions will have been generated for all subprojects
(except the pom projects). These projects can now be imported into Eclipse.

If you will be working with the GWT face, you may want to make use of the GWT Eclipse plug-in
of Google. Detailed instructions can be found on the following site: http://code.google.com/eclipse/docy
download.html [http://code.google.com/eclipse/docs/download.html]. We have experienced a problem
with the project dependenciesin Eclipse, which can be solved by running the gwt:eclipse goal of the GWT
maven plug-in. This goal should be run the GWT project directory: geomajas-gwt-simple or geomajas-
gwt-example (currently in development).

geomaj as- gw - si npl e> mvn gwt:eclipse

If you run this goal it will install the dependent libraries in the lib folder of the GWT war layout.
Unfortunately, however, GWT does not alow Eclipse to automatically deploy in thisfolder.

After importing and building the GWT projects, make sure you convert them to GWT projects in the
project properties dialog:

24

http://code.google.com/eclipse/docs/download.html
http://code.google.com/eclipse/docs/download.html
http://code.google.com/eclipse/docs/download.html

Setting up your
development environment

Figure 6.3. Eclipse project propertiesdialog

_inix
41 wWeb Toolkit - - v
Resource
- Builders [V Use Google Web Toolkt
- Checkstyle —GWT SDE
=+ Google
- #ipp Engine @ Use default SDK (gwt-2.0.0-rc2 - 2.0.0-rc2) Confiqure SOKs. ..
- web Application € Uss specific SDK: [qui-2.0.0vc2 - 2.0.0vc2 =
+- el Toolkit
L [~ Entry Point Modules
[Jawa Code Style
- Java Compller |X| Geomajas - org.geomajas.gwk Add...
- Java Editor
Javador Location Remove
Project References
- Refactoring Histary Restore Defaults
- RunfDebug Settings
- S¥M Info
[+1- Task Repository
Task Tags
Torncat
[+ validation
- WikiText

Check the "Use Google Web Toolkit" checkbox. The GWT SDK can be configured by clicking on the "
Confi gure SDKs..." link. After configuration, you should now be able to run the project asa GWT
Web application.

IDEA

The setup in IntelliJ IDEA is quite straightforward and does not require running a separate maven
command. Make sure you use the maven import wizard to open your project, it can be activated from the
File menu "Open project” and selectthe root pom.xml file.

Figure 6.4. Open Geomajas project (replaceroot directory with your own)

Open Project [:?
Fraoject files {ipr, pom.xml)

I mE| D Hide path
|,fhume,fjoachim,fmvhpp,fp0m.xml |
23 Music -
= myapp
% Easrc =
3 war
& ipom xmi:
CoPhotos -

Drag and drop a file into the space abowe to quickly locate it in the tree.

" oK, |]| Cancel J

Developing with the GWT face will requireyou to install the latest version of IntelliJIDEA (9.0) asthisis
the only version that supports GWT 2.0. The IDE will recognize the GWT projects and assign the correct
facet but as aways you will have to make your own run configuration (which is fortunately trivial).

25

Setting up your
development environment

Depending on the actual IDEA version, some additional settings have to be done in the project structure
dialog. Apart from specifying the GWT installation directory, thereis a specific project setting which has
to be done manually, which is setting the target Web facet to "Web". The project structure for the smple
GWT project should look as follows:

Figure 6.5. Project structurefor smple GWT project

& & 2|z = (Facetowr
[Project Settings — | — @ Bean Validation Path 10 GWT installation directory.
Project - ReEs fhome/joachim/java/gwi-2.0.0 El ‘j
Modules p- (€l cwt) S—
Libraries L @Gt (myapo)] Target e Facer [e []
Facets 2>~ € Hibernate rGWT o
Artifacts - [@)avasE Appiication Javascrint autput style |petaitea =]
—Platform Settings — | [~ (@ JPA
auormsenings s Compiler maximurn heap size (Mb): [128 |

SoKs - A I5F
Ciotal Linraries > @ Spring Adclitional compller YM parameters: |]

[~ £ Tapestry Compiler parameters [|

> [Web

L & weo be GWT Module | Output Relative Path |

&b Beans 'y app. GeomajasEntryPoint Jrmy.app. GeomajasEntryPoint
[@ Webservices
@ Webservices Client
/. GWT compiler output isn't inclucled in an artifact ‘ Fixt
[ok)| cancet || soev |[Hew |

After this, you should be able to run and debug the project. Note that this setting is needed for each of the
GWT modules you want to be able to run.

Maven

If you are working with another IDE or not using an IDE, it is always possible to run the example
projects directly from maven. For the Dojo face (geomajas-dojo-simple and geomajas-dojo-example-war)
the maven command is as follows:

geonnj as- doj o- si npl e> mvn jetty:run

This command will start up the Jetty servlet engine, after which you can connect to the process for
debugging.

InaGWT project, you should run the following goal:
geomaj as- gwt - si npl e> mvn gwt:debug

Thiswill start up GWT devel opment mode, debugging should also be possible here.

26

Chapter 7. How to release Geomajas

The Geomajas project consistsof many pieceswhich each havetheir own release cycle. The most important
parts are the back-end, faces and plug-ins. The example programs, documentation and and build tools also

have individual release cycles.

This chapter triesto explain how to release any of these modules. The procedureissimilar for all modules,

but there are some specific checks to be done which only apply for certain parts.

As the releases are done to the Sonatype's nexus repository for open source projects (which is synced to

Maven Central), the following references are a required read:

» Sonatype OSS Maven Repository Usage Guide [https://docs.sonatype.org/display/Repository/

Sonatype+OSS+Maven+Repository+Usage+Guide]

* How to Generate PGP Signatures with Maven [http://www.sonatype.com/people/2010/01/how-to-

generate-pgp-signatures-with-maven/]

The basic procedure is very easy, for the part you want to release, execute the following two commands
(using the next version as parameter, this will make you type less). These steps should be done in aclean

location, it is best to do a fresh checkout.
» mvn -DdevelopmentVersion=1.8.0-SNAPSHOT release:prepare

* mvn release:perform

Before doing the release, you should update the version which is mentioned in the master.xml file (this
version is displayed on the front page of the manual and is not automatically updated). After the release,

this should be updated to the new devel opment version.

At the end of the build, the src/main/resources/api.txt needs to be updated with the file which is put in

target during the build (though the header at the top should remain, with the version updated.

The geomajas-dep pom and aggregate.sh need to be updated for the released and new snapshot versions

respectively.

Remember to comment the snapshot repository in al poms.

The documentation uses the example applications for extracting code which is included in the manual.
Thisisacircular dependency when it includes the part to be released. It may be useful to do alocal build
using the next release version locally, to alow the release the work for the documentation part. You can

do the actual release of the example application at the end.

When releasing the backend core, there may be a problem building the javadocs. The solution can be to

do alocal build of the backend using the next release version before doing the actual release.

When releasing the GWT face, make sure the dependency versions are correct in geonaj as- gw -

archet ype/ src/ mai n/ resour ces/ ar chet ype-r esour ces/ pom xni .

Close the staging repository (which makes the artifacts available for testing). When staging several parts,
it is recommended to close each separately. This alows more fine-grained promotion and/or dropping of

artifacts.

When staging is done and the repository closed, start avote to allow usersto test the new artifact.

When the vote failed, drop the repository. Development just continue and the version number is skipped.

Therelease date in JIRA is actually the staging date.

27

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/

How to release Geomajas

When the vote was successful, promote the staged artifacts and announce the release, for the back-end,
this requires the following steps:

1

2.

Upload zip files to sourceforge download area

JRA: Assure the next version exists, mark the current version as released agreeing to move open issue
to the next version.

. For unstable release: install gwt-example for onlinetrial
. For stable release: install al demo application for online trial

. Announce;

* Build announcement message using the following template:
title: Geomajas 1.5.0 technology preview/release candidate/stable released
The Geomajas project is proud to release Geomajas 1.5.0, a technology preview
showcasing the progress we are making towards our next stable build.

The major advances in this version include (indicate major contributors when
appropriate)

« modularization of the system
 introduction of a GWT face

For the full list of changes, see http://jirageomajas.org/jira/
secure/
ReleaseNote.jspa?version=10131& styleName=Html & projectl d=10000& Create=Create

Documentation for this release can be found at http://files.geomajas.org/maven/
1.5.0/geomgjas/userguide.html .

Download links can be found at http://geomajas.org/release 1.5.0.
For the next release we plan to include the following features
« ahsorb CO2 from the air to reduce global warming
» remove need for system to be powered
Please note that thisis an unstable release, al the new features since the previous
stable release may till change and we some new bugs may have been introduced.
If you want to help us, join the discussions on the devel oper list, list bugsinjiraand
make feature requestsin our fora. See http://www.geomajas.org/gis-development .
Geomajas is the extensible open source web mapping framework, enabling
integrated GI S solutions for businesses and government.

Feel free to change wording and add useful content.

* Create download image for this version (278x61 pixels).

28

How to release Geomajas

Add release on download page (remember to name the page "release 1.5.0" with correct version
number).

For a stable release, update the documentation page.
For a stable release, update Geomajas wikipedia page.
Send announcement to majas-dev (plain text).

Publish on general forum.

Create news item (without the "Geomajasis..." footer.

Send mail to jan.pote@geosparc.com to assure Geosparc isinformed of the release.

29

Appendix A. Geomajas Contributor
License Agreement

In order for N.V. Geosparc (hereinafter “Geosparc”), acompany under Belgian Law having its registered
office at Gaston Crommenlaan 10, box 101, 9050, Gent, Belgium which is registered at the commercia
register in Ghent, n° 0808.353.458, to have a clear understanding on the intellectual property rights
associated with the Geomajas software library (hereinafter “ Geomajas Project”) and to clearly determine
the responsibilities and obligations associated with the Contributions (as defined hereinafter), Geosparc
must receive asigned Geomajas Contributor License Agreement of the Contributor (as defined hereinafter)
indicating that the Contributor agrees with the terms and conditions as defined hereunder. This Geomajas
Contributor License Agreement (hereinafter “the Agreement”) intends to protect the Contributor as well
as Geosparc.

Contributor hereby accepts and agrees to the following terms and conditions with regard to past, current
and future Contributions submitted by Contributor to Geosparc, and has accepted the policy “ Geomajas
Contributions Policy”

Definitions

When used in this Agreement the following words and or expressions shall have the meaning as stated
hereunder unless the context expressly requires otherwise:

1. “Contributor” means 1/ any individual and/or legal entity that voluntarily submits (a) Contribution(s)
to the Geomajas Project or 2/ any individual legally representing his’her Company.

2. “Contribution” means any original work, including any modification and/or addition to the existing
work that is submitted for introduction in, or documentation of, any of the products owned or managed
by Geosparc, where such work originates from a Contributor. A Contribution may be submitted in
any form of electronic, verbal and/or written communication or documentation, including without
limitation, communication on electronic mailing lists, source code control systems and issue tracking
systemsthat are managed by or on behalf of Geosparc for the purpose of discussion and improving the
results of the Geomajas Project.

Granted Rights - Representations

1. For the benefit of Geosparc, the Contributor hereby:

a. irrevocably assigns, transfers and conveys to Geosparc all right, title and interest in and to the
Contribution(s). Such assignment includes copyrights (to the extent permitted by applicable
mandatory law) and all other intellectual property rights other than patents and patent applications
(“Patent”), together with all causes of actions accrued in favour for infringement thereof, recognized
by any jurisdiction (“Proprietary Rights’). Without limitation of the foregoing, Geosparc shall be
entitled to determine in its sole discretion whether or not to use the Contribution(s) and to use,
sell, distribute, license, re-produce, re-use, modify, update, edit or otherwise make available the
Contribution(s) asit seesfit, in any manner currently known or in the future discovered and for any
and all purposes;

b. grants (to the extent that under applicable mandatory law, Proprietary Rights cannot be assigned,
transferred or conveyed) to Geosparc and to the recipients of the software incorporating the

30

Geomajas Contributor
License Agreement

Contribution(s) an irrevocable, worldwide, non-exclusive, fully paid-up and royalty-free copyright
license to reproduce, modify, prepare derivative works of, (publicly) display, perform, sub license
and distribute the Contribution(s);

c. grantsto Geosparc and to recipients of software distributed by Geosparc aworldwide, non-exclusive,
fully paid-up, royalty-free, irrevocable (except as stated in this Agreement) Patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Contribution(s), where such
license applies only to the Patent claims licensable by Contributor that are necessarily infringed
by the Contributor’s Contribution(s) alone or by combination of such Contribution(s) with other
work of Geosparc. Contributor furthermore agrees to immediately notify Geosparc of any patents
that Contributor knows or comes to know are likely infringed by the Contribution(s) and/or are
not licensable by the Contributor. If any entity institutes patent litigation against the Contributor or
any other entity (including a cross-claim or counterclaim in a lawsuit) alleging that Contributor’s
Contribution(s) or the Geomajas Project work to which the Contributor has contributed constitutes
direct or contributory patent infringement, then any Patent licenses granted under this Agreement
for that Contribution or Geomajas Project work shall immediately terminate as of the date such
litigation is filed.

2. Upon the assignment of the Proprietary Rights and the grant of the license as set forth in this article
2, Geosparc hereby grants a non-exclusive, worldwide, fully-paid up, royalty-free license to make, use
reproduce, distribute, modify and prepare derivative works based on the Contribution(s) of Contributor.

3. Contributor hereby represents and warrants that:

a In the case that the Contributor is an individual who works in hisher own name the Contributor
guarantees that he/she is legally entitled to assign the Proprietary Rights and to grant the above
license.

b. In the case that the Contributor is an employee the Contributor guarantees that he/she can legally
represent the Company and is entitled to assign the Proprietary Rights and to grant the above license.

c. Inthe case the Contributor is a Company and the Contributor’s employee(s) or consultant(s) have
rightsto intellectual property the Contributor warrants that its employee(s) has waived such rights;

d. each Contribution is the original creation of the Contributor. Contributor represents that each
submission of a contribution includes complete details of any third-party license or other restrictions
of which you are aware and which are associated with any part of the Contribution(s);

€. no claim or dispute has been threatened or filed in connection with the ownership, use or distribution
of the Contribution(s); and

f. the execution of this Agreement does not constitute a breach under any other agreement to which
Contributor and/or its employer is a party, does not require the consent, approval or waiver from or
notice to any third party and does not violate any law or regulation.

Contributor shall immediately inform Geosparc of any facts and/or circumstances of which Contributor
becomes aware that would make the representations and warranties inaccurate or untrue in any respect.

Contributor further agrees that Contributor shall at no time hereafter dispute, contest or aid or assist
third party in disputing and/or contesting, either directly or indirectly, theright, title and interest in any
and all Contributions of Geosparc as detailed in this Agreement.

4. In casethat under applicable mandatory law the Contributor retainsthe moral rights or other inalienable
rights to the Contributions, the Contributor agrees not to exercise such rights without the prior written
permission of Geosparc.

31

Geomajas Contributor
License Agreement

5. Inorder to ensure that Geosparc will be ableto acquire, use and protect its Proprietary Rights asdetailed
in this article 2, Contributor will (i) sign any documents to assist Geosparc in the documentation,
perfection and enforcement of itsrights, and (ii) provide Geosparc with support and reasonable access
to information for applying, securing, protecting, perfecting and enforcing itsrights.

Warranties

EXCEPT FOR THE EXPRESSWARRANTIESDETAILED IN ARTICLE 2, THE CONTRIBUTION(S)
ARE PROVIDED “AS IS’ AND NEITHER CONTRIBUTOR NOR THE Geosparc MAKES ANY
WARRANTIES OF ANY KIND TO THE OTHER PARTY, EITHER EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION OF ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Miscellaneous

1. ThisAgreement shall enter into force upon execution of thisdocument by Contributor. This Agreement
may be terminated by aparty if the other party commits abreach of this Agreement provided that if the
breach iscapable of remedy termination shall not occur if the breach shall not have been remedied within
90 days of such other party having been given notice in writing specifying the breach and requiring it
to be remedied. The termination of this Agreement shall however remain in full force and effect with
respect to any Contribution submitted prior to the termination date of the Agreement.

2. This Agreement contains the entire agreement between the parties and supersedes all prior or

contemporaneous agreements or understanding, whether written or oral, relating to its subject matter.

If any provision of this Agreement shall be deemed invalid or unenforceable, the validity and

enforceability of the remaining provisions of this Agreement shall not be affected and such provision

shall be deemed modified only to the extent necessary to make such provision consistent with applicable
law.

3. 4.3.The Agreement is governed by the laws of Belgium, without reference to its conflict of law
principles.

4. Geosparc shall havetheright to assign itsrights and obligations hereunder to any successor or assignee
of its business or assets to which this Agreement relates, whether by merger, establishment of alegal
entity, acquisition, operation of law or otherwise without the prior written consent of the Contributor.

Please execute (2) original copies of the above document and send this to the following recipient:
Address of recipient

Geosparc
Gaston Crommenlaan 10/101
BE-9050 Ghent

BELGIUM

32

Geomajas Contributor
License Agreement

The Contributor:

Name:
Title (if applicable in case of legal entity):

Full name of legal entity and address registered office (if applicable):

Date:

Signature:

The Company:

Name:
Title (if applicablein case of lega entity):

Full name of legal entity and address registered office (if applicable):

Date:

Signature:

N.V. Geosparc — Register N° BE 0808.353.458

33

Appendix B. Maven repository

The project use the nexus repository manager [http://nexus.sonatype.org/] to store all Geomgjas jars and
al dependencies.

The following configuration can be used in your maven profile :
<repositories>
<reposi tory>
<i d>Geonmj as</i d>
<nanme>Ceonmj as repository</ nanme>

<url >http:// maven. geonmaj as. org/ </ url >
</repository>
<l-- uncoment if you want to use Geonmj as snapshots, coment for faster build
<reposi tory>
<i d>Geonmj as snapshots</id>
<nanme>Ceonmj as repository</ nanme>
<url >http:// maven. geonaj as. org/ </ url >
<snapshot s>
<enabl ed>t r ue</ enabl ed>
</ snapshot s>
</repository>
</repositories>

If you do not need access to the snapshot releases, then it is recommended to remove that repository from
your pom (it will make your compilation alittle faster).

The Geomajas build has quite a few dependencies which are gathered from several repositories.
Our nexus instance functions as a proxy for the following repositories;;

* maven central: http://repol.maven.org/mavenz/

* java.net repo: http://download.java.net/maven/2/

o jtsAgwt: http://jtsAgwt.sourceforge.net/maven/repository/

e OSGeo: http://downl oad.osgeo.org/webdav/geotool s/

« refractions: http://lists.refractions.net/m2

o smartgwt: http://www.smartclient.com/maven2

 gpring milestones: http://repository.springsource.com/maven/bundles/milestone
* spring releases: http://repository.springsource.com/maven/bundles/rel ease

* selenium: http://nexus.openga.org/content/repositories/rel eases

« selenium snapshots: http://nexus.openga.org/content/repositories/snapshots

* hibernate-spatial: http://www.hibernatespatial .org/repository

» JBoss (a.0 hibernate): https://repository.jboss.org/nexus/content/groups/public/

http://nexus.sonatype.org/
http://nexus.sonatype.org/

	Geomajas contributor guide
	Table of Contents
	Chapter 1. Developers information
	maven compilation, targets, profiles, variables
	GWT build
	dojo build
	Running the example applications

	Documentation
	API contract
	Versioning
	subversion, commits
	Coding
	Logging
	Unit testing
	Exception handling
	Refactoring
	File encoding
	Other

	Chapter 2. Coding quality and style
	Class, method and variable names
	Comment
	Claim your code
	Code layout

	Chapter 3. Spring usage in Geomajas
	Spring dependency injection
	Bean naming convention
	Initialising the applicationContext

	Chapter 4. Face or plug-in
	Plug-in structure
	Plug-in application context
	Plug-in web context
	Plug-in pom
	Plug-in modules

	Plug-in creation
	Plug-in state
	Plug-in graduation
	Plug-in retirement

	Chapter 5. JIRA conventions
	Basic issue tracker rules
	One problem one issue
	Provide a meaningful summary
	Provide a clear description

	Filling out the JIRA form

	Chapter 6. Setting up your development environment
	Prerequisites
	Maven
	Subversion
	GWT
	Build procedure

	Eclipse
	IDEA
	Maven

	Chapter 7. How to release Geomajas
	Appendix A. Geomajas Contributor License Agreement
	Definitions
	Granted Rights - Representations
	Warranties
	Miscellaneous

	Appendix B. Maven repository

