
Geomajas contributor guide

Geomajas Developers and Geosparc

Geomajas contributor guide
by Geomajas Developers and Geosparc

v1.7.1
Copyright © 2010 Geosparc nv

iv

Table of Contents
1. Developers information .. 1

maven compilation, targets, profiles, variables ... 1
GWT build .. 1
dojo build ... 1
Running the example applications ... 2

Documentation ... 2
API contract .. 3
Versioning ... 4
subversion, commits .. 4
Coding .. 4

Logging .. 5
Unit testing ... 5
Exception handling ... 6
Refactoring .. 6
File encoding ... 6
Other .. 6

2. Coding quality and style .. 7
Class, method and variable names ... 7

Comment .. 8
Claim your code ... 9
Code layout ... 9

3. Spring usage in Geomajas .. 12
Spring dependency injection ... 12

Bean naming convention .. 12
Initialising the applicationContext .. 13

4. Face or plug-in ... 14
Plug-in structure ... 14

Plug-in application context ... 14
Plug-in web context .. 15
Plug-in pom ... 16
Plug-in modules .. 18

Plug-in creation .. 18
Plug-in state ... 19

Plug-in graduation ... 19
Plug-in retirement ... 20

5. JIRA conventions .. 21
Basic issue tracker rules ... 21

One problem one issue .. 21
Provide a meaningful summary ... 21
Provide a clear description ... 21

Filling out the JIRA form ... 21
6. Setting up your development environment ... 23

Prerequisites ... 23
Maven .. 23
Subversion ... 23
GWT .. 23
Build procedure .. 23

Eclipse .. 24
IDEA .. 25
Maven .. 26

7. How to release Geomajas ... 27

Geomajas contributor guide

v

A. Geomajas Contributor License Agreement ... 30
Definitions ... 30
Granted Rights - Representations ... 30
Warranties ... 32
Miscellaneous ... 32

B. Maven repository .. 34

vi

List of Figures
6.1. Hierarchical project layout .. 24
6.2. Command prompt after running 'mvn install' .. 24
6.3. Eclipse project properties dialog .. 25
6.4. Open Geomajas project (replace root directory with your own) .. 25
6.5. Project structure for simple GWT project .. 26

vii

List of Tables
1.1. logging levels .. 5

viii

List of Examples
4.1. Plug-in declaration in geomajasContext.xml ... 15
4.2. geomajasWebContext.xml for ResourceController ... 16
4.3. Create project using GWT Maven archetype .. 19
4.4. Create project using GWT Maven archetype .. 19

1

Chapter 1. Developers information
maven compilation, targets, profiles, variables

When doing an initial compilation of Geomajas, you may need to start compilation from the "build-tools"
and then the "backend" directories. Only when these are compiled, compilation from the project root will
succeed.

cd build-tools
mvn install
cd backend
mvn install
cd ..
mvn install

The source contains one main pom which allows building of the Geomajas framework and each of the
sample applications in one go.

You can also choose to build them individually.

There are a couple of profiles defined which should help during development:

• -DskipShrink: do not use shrinking when building or using the dojo face. When not specified, a
shrinked version of the javascript files is used. The files are compressed and combined for faster loading
and better caching.

• -DskipDocs: do not build the documentation module. Can speed up the build a little.

• -Dfull-build: from the root project, this enables inclusion of the build tools and documentation in
the build. This is actually enabled by default (to desable use -Dhudson"),

• -Dhudson: profile for running the selenium integration tests on the hudson continuous integration
server. As long as running the tests on the ci server proves problematic, this will disable these tests.

GWT build
For faster compilation during testing (when not using development mode), it can be useful to compile
only for the browser used for testing. This will reduce the number of compilation steps by a factor 6.
Removing supported languages can further remove compilation steps. Include the following excerpt in
your Xxx.gwt.xml file to set your target browser.

<!-- set target browser to compile for, use this to limit to the browser used for testing -->
<!-- where value = "ie6/opera/gecko1_8/safari/gecko" , "gecko1_8" is FireFox 3 -->
<set-property name="user.agent" value="gecko1_8" />

dojo build
For development using the dojo face, apart from using the "-DskipShrink" setting mentioned higher, you
may also want to configure the ResourceController to try to directly read the javascript files from disk
before looking at the classpath (it also changes the cache headers). This allows a simple refresh in the
browser to load the changed versions. You can configure this using a init-param for the dispatcher servlet,
like in this example.

Developers information

2

<servlet>
 <servlet-name>dispatcher</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>files-location</param-name>
 <param-value>/home/me/apps/java/geomajas/geomajas/geomajas-dojo-client/src/main/resources</param-value>
 <description>
 When this is specified, files are searched here first.
 Files which are found at this locations are not cached.
 </description>
 </init-param>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath*:META-INF/geomajasWebContext.xml</param-value>
 <description>Spring Web-MVC specific (additional) context files.</description>
 </init-param>
 <load-on-startup>3</load-on-startup>
</servlet>

Running the example applications
Once you have done a "mvn install" on either the entire tree or the "Geomajas" directory, you can
use maven to run the example applications.

For the dojo face, you can run the examples using (when in the geomajas-dojo-example directory)

mvn jetty:run

For the gwt face, you have two options. Once in the geomajas-gwt-simple directory, you can run the
application in development mode using

mvn gwt:run

Note

Due to classpath problems and the gwt-maven-plugin which does not properly handle excluded
dependencies (the "provided" scope), this can fail on some systems.

Alternatively you can run the actual war using

mvn jetty:run-war

Note

It can be advisable to run "mvn clean" between "gwt:run" and "jetty:run-war" or the classpath
problem from the previous footnote may appear again.

Documentation
The general documentation is split in three books.

• developers guide: guide for developer who want to use Geomajas in their application.

• contributors guide: guide for people who want to contribute to the project or want to know more about
the functioning of the project (this one).

Developers information

3

• end user guide: documentation for end users of applications built using Geomajas.

Apart from that, each face and each plug-in has their own documentation.

All documentation is written in docbook format to allow both PDF and HTML output formats. The sources
can be found in the "documentation" directory of the project.

For editing the docbook files, we recommend using XMLMind [http://www.xmlmind.com/xmleditor/].
The personal version is free and can (at the time of writing) be used for editing open source documentation.

The docbook files are currently formatted using XMLMind. When using another tool for editing, please
keep the current formatting to assure diffs remain usable.

The documentation includes a lot of examples which are excerpts from the source of the example
applications. This prevents copy-paste mistakes. The build process for the documentation automatically
updates these excepts. The directories which have to be scanned for excepts are specified in the pom. When
this includes code which is not in the current versioned entity (the root directory for the face or plug-in),
then the source needs to be obtained from a dependency and unpacked. Excerpts can be annotated using
annotations like

<!-- @extract-start AllowAllSecurity, Allow full access to everybody -->
<bean name="security.securityInfo" class="org.geomajas.security.SecurityInfo">
 <property name="loopAllServices" value="false"/>
</bean>
<!-- @extract-end -->

for XML or

// @extract-start filename, title
for (String line : lines) {
 // do something
}
// @extract-end

for java files. The start annotation includes the filename which should be used (all files are placed in the
"listing" directory) and optionally a title for the example.

API contract
The Geomajas project has a very strong API contract. To assure the project adheres to this contract, we
have the following requirements;

• No API classes or interfaces may be removed.

• No API classes or interfaces may be renamed.

• No API classes or interfaces may have their package name modified.

• No API methods may be removed.

• No API methods may have their signature changed.

• No methods may be added to classes annotated using "@UserImplemented".

• Each class on which a "@Api" annotation is added should have a "@since" javadoc comment.

http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com/xmleditor/

Developers information

4

• Each method on which a "@Api" annotation is added should have a "@since" javadoc comment.

• Each public method which is added in a class which is annotated with "@Api(allMethods = true)",
should have a "@since" javadoc comment.

The checkstyle configuration which is used for the project (which is defined in the geomajas-parent parent)
tries to check the API contract. This required a api.txt file in src/main/resources which contains the API
for the previous release version. The API for the compiled version is put in target/api.txt.

Note that apart from the class and method signatures, the behaviour should also remain constant (especially
when documented or tested). Just keep a method and throwing NotImplementedException cannot
be considered "maintaining a stable API".

Versioning
Version have a major.minor.patch structure.

• major: indicates that this release has major advances over previous releases. New major versions do not
need to be backwards compatible.

• minor: indicates that there are important new features that do not break compatibility with previous
versions with the same major number. Even minor versions are used for "stable" versions which will be
supported by Geosparc. Odd minor versions are used for work-in-progress and stabilisation efforts.

• patch: bugfixes and smaller improvements.

subversion, commits
New committers need to sign an agreement which hands over copyright to Geosparc. Policies are needed
for assigning commit rights (see below).

All SVN commits should include the JIRA issue number at the start of the commit message, and a short
description of the work done. The JIRA issue number allows linking the commits with the issues (as can
be seen in JIRA), the short message allows persons to know what is happening without referring to JIRA.
The only times JIRA issue number are not needed is for making "obvious" changes like fixing typos.

Commits should be grouped by issue as much as possible/sensible (better two commits than one commit
for fixing two issues, better one commit of five files than five commits of one file (for one issue)).

Development of the "latest-and-greatest" version happens in "trunk".

Continued development on earlier versions (when not "latest-and-greatest") occur in branches with the
future version number as name.

When a release is cut, a tag with the release version as name is created. The release should be built from
the tagged files.

After each commit, the system should still compile and all test cases should still succeed. There is a
continuous integration engine (Hudson) which verifies this and send messages to the commit mailing list
on failures.

Coding
Note that details about coding style and naming are on the coding style [???] page.

???
???

Developers information

5

Logging
• When inserting debug statements, parameterized messages should be used to prevent the need/

usefulness of isDebugEnabled().

• all logging is done through slf4f, logger is created using

private final Logger log = LoggerFactory.getLogger(ContainingClassName.class);

• logging levels

Table 1.1. logging levels

log level default on use

ERROR yes major problems, should always
be visible in logs and are likely to
require action from a person (to
fix the condition or assure it does
not happen again). Indicates that
something is seriously wrong.

WARN yes warning about potential
problems. Should always be
visible in logs and a person will
probably need to assess whether
this is harmless or should be
treated as an error.

INFO yes important information. You can
assume this level is on in
production, so it should be
carefully considered whether this
level is appropriate. In general
only used to indicate service
status (started, stopped).

DEBUG no logging information which is
detailed enough to know what is
happening in the system, without
flooding the logs.

TRACE no very detailed logging, probably
only making sense to the
developer of the code.

• When an exception is caught and (another exception) thrown you should not log the exception. You
should however include the cause in the newly thrown exception.

Unit testing
Unit testing: At least each class implementing the public API should have a unit test, testing all methods.
For testing JUnit is used.

• Advantages of unit testing:

• Capturing a JIRA [http://jira.geomajas.org/] bug report in a reproducible manner.

http://jira.geomajas.org/
http://jira.geomajas.org/

Developers information

6

• Allowing you to specify exactly the behaviour you want, before you start coding.

• How unit testing should be done:

• If you are testing src/main/java/org/geomajas/ToBeTestedClass.java, create a class src/test/java/org/
geomajas/ToBeTestedClassTest.java. Actual test methods have a name starting with "test". The class
itself should extend jnit.framework.TestCase.

• The test will automatically be run when running "mvn install".

• Integration tests should also be provided. These can also be used for testing the user interface (thanks
to selenium).

Exception handling
Never throw away exception, either log them or throw them again (possibly wrapped). Do not log and
throw, this only clutters log files with duplicate exceptions.

Do not wrap exceptions unnecessarily (so no GeomajasException caused by a
GeomajasException) unless you add additional information in the message.

When wrapping an exception, always include the cause.

Refactoring
Changes in the (public) API use a "deprecate, then remove" cycle. It should be marked "deprecated" in at
least one minor version before it can be removed in the next major version.

File encoding
All source files, including .properties files should use UTF-8 encoding.

Other
For the directory structure and file locations, we follow standard maven conventions (see http://
maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html).

7

Chapter 2. Coding quality and style
As a general note, the coding style and naming conventions should be adhered to. Some parts are even
checked by the checkstyle maven plug-in. However, deviations are always allowed when this enhances
code readability.

Formatters are available for the style as described here (see bottom of document). You can be liberal
on applying this on new code, but be prudent when applying these to the existing code base. Code style
changes make revision changes a lot more difficult and should thus be limited. If there is a need to reformat
existing code, then this should be done in a separate commit.

Class, method and variable names
Rules

• Use meaningful names. Especially class and method names should explain their purpose.

• For class, method and (non-static) variable names, use camelCase to separate the words, not underscores.
For abbreviations, capitalize he first letter, lower case for the others.

• Class names start with a capital, for example "CommandDispatcher".

• Method and (non-static) variable names start lower case, for example "getEmptyCommandResponse".

• All static variables should have capitalized names with words separated by underscores.

• Package names are all lower case and should be singular.

• Use get/set/isXxx.

• Abbreviations and acronyms should not be uppercase when used as name (for example, use
"exportHtml()").

• All names should be written in English.

• The terms get/set must be used where an attribute is accessed directly.

• "is" prefix should be used for boolean variables and methods. In some cases, when this is more readable,
"has", "can" or "should" can also be used as prefix.

• Complement names must be used for complement entities. These include get/set, add/remove, create/
destroy, start/stop, insert/delete, increment/decrement, old/new, begin/end, first/last, up/down, min/
max, next/previous, old/new, open/close, show/hide, suspend/resume, etc.

• Exception classes should be suffixed with Exception.

Recommendations

• Usually class names are nouns and method names are verbs.

• Generic variables should have the same name as their type.

• Variables with a large scope should have long names, variables with a small scope can have short names.
Scratch variables used for temporary storage or indices are best kept short. A programmer reading such

Coding quality and style

8

variables should be able to assume that its value is not used outside a few lines of code. Common scratch
variables for integers are i, j, k, m, n and for characters c and d.

• The name of the object is implicit, and should be avoided in a method name. For example, use
"line.getLength()" instead of "line.getLineLength()". The latter might seem natural in the class
declaration, but proves superfluous in use, as shown in the example.

• The term compute can be used in methods where something is computed.

• The term find can be used in methods where something is looked up.

• The term initialize can be used where an object or a concept is established.

• Plural form should be used on names representing a collection of objects.

• Negated boolean variable names must be avoided.

• Default interface implementations can be prefixed by Default. However, if it is not expected that there
will even be another implementation, it can be a lot more natural to suffix with "Impl" instead.

• Singleton classes should return their sole instance through method getInstance, should have a private
constructor and be declared final.

• Functions (methods returning an object) should be named after what they return and procedures (void
methods) after what they do.

• Data transfer objects sometimes exist in two flavors, one which contains the Geomajas geometry dto's
and one which contains JTS geometry objects. In that case, the variant with the geometry dto's should
use the natural name, and the variant with JTS geometry objects should have a class name which has
the "JG" suffix (JG stands for Jts Geometry).

Comment
Each file should have the correct copyright notice at the start of the file.

/*
 * This file is part of Geomajas, a component framework for building
 * rich Internet applications (RIA) with sophisticated capabilities for the
 * display, analysis and management of geographic information.
 * It is a building block that allows developers to add maps
 * and other geographic data capabilities to their web applications.
 *
 * Copyright 2008-2010 Geosparc, http://www.geosparc.com, Belgium
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.

Coding quality and style

9

 */

Note that the end year (shown here is 2010) should always be the current year. All headers will be updated
at the beginning of each year.

• The copyright message should be at the top of the file. However, for js files, it is allowed to have the
"dojo.provide" line above the copyright as this helps for debugging.

• Each class and interface should have class comments indicating the purpose of the class.

• Public methods should be commented if the meaning is not entirely clear from method and parameter
names (is it ever?). When the method overrides or implements a method, then repeating the javadoc
is not needed.

• Comments in the code are recommended when they explain a block of code or when they explain why
things are done in a certain way. Repeating the code in human readable wording is wasteful.

• Use "@todo" comments to indicate shortcuts or hacks which should be fixed. Better still is just to do
it right and not have the shortcut.

• All comments should be written in English.

• Comments should be indented relative to their position in the code.

• Javadoc comments should be active, not descriptive (for exampe on method "getXxx()" the comment
could be "Get xxx").

• All classes and interfaces need javadoc class comments.

• All classes and interfaces in the geomajas-api module need full javadoc comments on all methods.

• All classes, interfaces and methods which have a "@Api" annotation needs a "@since" javadoc
comment to indicate the version in which the class or method was added. This is also the case for
methods which are added in classes with "@Api(allMethods = true)" annotation.

Claim your code
Be proud of your code and take responsibility of your changes. When making any kind of significant
changes (not for reformatting, fixing typing errors or renaming), add your full name at the bottom of the
authors list in the class comments.

Code layout
See the example below

/*
 * This file is part of Geomajas, a component framework for building
 * rich Internet applications (RIA) with sophisticated capabilities for the
 * display, analysis and management of geographic information.
 * It is a building block that allows developers to add maps
 * and other geographic data capabilities to their web applications.
 *
 * Copyright 2008-2010 Geosparc, http://www.geosparc.com, Belgium
 *
 * This program is free software: you can redistribute it and/or modify

Coding quality and style

10

 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

package org.geomajas.bladibla;

/**
 * Short description of the purpose of this class.
 *
 * @author Author's name
 * @author Another Author's name
 */
@Annotation(param1 = "value1", param2 = "value2")
public class Foo implements Serializable {

 int[] x = new int[] {1, 3, 5, 6, 7, 87, 1213, 2};

 /**
 * Do something
 *
 * @param x some data
 * @param y more data
 */
 public void foo(int x, int y) throws Exception {
 for (int i = 0; i < x; i++) {
 y += (y ^ 0x123) << 2;
 }
 do {
 try {
 if (0 < x && x < 10) {
 while (x != y) {
 x = f(x * 3 + 5);
 }
 } else {
 synchronized (this) {
 switch (e.getCode()) {
 //...
 }
 }
 }
 }
 catch (MyException e) {}
 finally {
 int[] arr = (int[]) g(y);
 x = y >= 0 ? arr[y] : -1;

Coding quality and style

11

 }
 }
 while (true);
 }
}

• The code is written with the right margin at 120 characters and lines should not be longer than that if
possible.

• Tabs should be used for all indents. We assume a tab is four spaces for determining line length.

• When lines are split because they are too long, a double indentation should be used.

• Opening braces on the same line as the declaration/for/if..., so not aligned with the closing brace.

• No spaces inside brackets.

• Spaces around operators.

• No wildcards allowed on import statements.

• Always a space before braces.

• Always use braces (and thus multiple lines) for if, while, do-while.

• Array specifiers must be attached to the type not the variable.

• Class variables should never be declared public.

• Logical units within a block should be separated by one blank line.

We have both an eclipse [geomajas_formatter.xml] and IntelliJ IDEA [geomajas.xml] formatter which can
be used. However, be careful not to change the entire formatting of a class.

geomajas_formatter.xml
geomajas_formatter.xml
geomajas.xml
geomajas.xml

12

Chapter 3. Spring usage in Geomajas

Spring dependency injection
To assure the spring dependency injection is used, you should obtain beans through either injection
(possibly autowiring) or the application context. When you directly instantiate classes which require spring
dependency injection, you are likely to encounter NullPointerException or other problems.

@Component
public class MyClass {

 @Autowired
 private ApplicationContainer applicationContainer;

 public void myMethod() {
 Command command = applicationContext.getBean("controller.general.LogCommand", Command.class);

We recommend using the annotations when possible.

You cannot assume that (auto) wired services are initialized while the application context is being built.
If you need to do some initialization of the bean state, this should be removed from the setters which are
called while building the context, and moved to a post construct method.

@PostConstruct
private postConstruct() {
 // dome some stuff here
}

Bean naming convention
Bean names match the (fully qualified name of the) interface they implement if there is only one
implementation to be used. When this is not the case, the bean name is the (fully qualified) classname.
When the bean name starts with "org.geomajas.", this is cut off. Interfaces which are expected to have
several alternate implementations should be annotated with the "@ExpectAlternatives" interface.

There is a "GeomajasBeanNameGenerator" class which tries to automatically determine the bean names,
assuring that you don't need to mention this explicitly in the "@Component" annotation. If the first interface
which is implemented by the class does not have the "@ExpectAlternatives" annotation, then the fully
qualified name of the first interface is used as bean name. For all other beans, and for beans which are
in a "command" package and don't have a class name starting with "Default" the fully qualified class
name is used. In all cases the bean name has the "org.geomajas." prefix removed is present (using the
"GeomajasBeanNameGenerator.simplify()" method.

Note that these rules are built to easily replace instantiation based on class names by instantiating based
on bean names. For the same class name, you can often replace the code

Class.forName(className).newInstance();

by

applicationContext.getBean(GeomajasBeanNameGenerator.simplify(className));

Spring usage in Geomajas

13

Initialising the applicationContext
For servlets, you can use the GeomajasContextListener in the web.xml file.

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd" >
<web-app>
 <display-name>Geomajas application</display-name>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>classpath:/mypackage/shapeinmem/*.xml</param-value>
 </context-param>

 <listener>
 <listener-class>org.geomajas.dojo.server.servlet.GeomajasContextListener</listener-class>
 </listener>

The "contextConfigLocation" context-param allows you to specify additional application context
definition files. These will be included after the built-in Geomajas file and the configuration which is
contributed by the available plug-ins. You can include several files by separating them using whitespace.
Each location can include the protocol/location used to find the file. When no protocol is specified, the
file is searched on the class path. Ant-style wild cards can be used. The following are examples of allowed
patterns:

com/mycompany/**/applicationContext.xml
file:C:/some/path/*-context.xml
classpath:com/mycompany/**/applicationContext.xml
classpath*:conf/appContext.xml
:/WEB-INF/*-context.xml

The classpath* pattern is specific in that it will combine all the resources that match this exact pattern in
the classpath, not just the first one.

When the GeomajasContextListener is used, the application context can be obtained in the servlet using

public void init(ServletConfig config) throws ServletException {
 ApplicationContext applicationContext = ApplicationContextUtil.getApplicationContext(config);

When using another way to define the application context, you have to make sure to include "org/geomajas/
spring/geomajasContext.xml" (classpath resource, from the geomajas-impl module), and all the "META-
INF/geomajasContext.xml" (classpath resource, configuration for the plug-ins).

14

Chapter 4. Face or plug-in
Geomajas is an extensible frameworks which can be extended by including additional plug-ins on the class
path when the application is started.

Some of the possible extensions include

• adding security services.

• providing specific rendering pipeline which modify the default rendering.

• additional services which may be used (also by by other plug-ins), for example printing support.

• a different face (in principle a face is just another plug-in, the term "face" is used when the plug-in
produces data or makes data available to the outside world).

• access to a kind of data store (these are referred to as "layer" plug-ins, they consume data).

Plug-in structure
Some conventions are in use to make plug-ins easily accessible and auto-register, and to make plug-ins
good citizens of the Geomajas project.

Plug-in application context

Each plug-in can have a configuration file in META-INF/geomajasContext.xml which is
automatically included in the application context (after the main geomajasContext which comes from
the impl module, but before all files which are explicitly added (through web.xml)).

This context file should at least declare the plug-in, the plug-ins and dependent version it depends on, and
the copyright and/or license information for all other dependencies. It also has to indicate the API version
which is used. This is also version which is used for the back-end (which includes the API) which is used
in the pom. Assuming this compiles and that you only used

The dependencies are used to check compatibility of the plug-in with the back-end and required plug-ins.
If you only access them using the API, this should assure that everything stays compatible.

Face or plug-in

15

Example 4.1. Plug-in declaration in geomajasContext.xml

<bean class="org.geomajas.global.PluginInfo">
 <property name="version">
 <bean class="org.geomajas.global.PluginVersionInfo">
 <property name="name" value="Plug-in name" />
 <property name="version" value="${project.version}" />
 </bean>
 </property>
 <property name="backendVersion" value="1.7.1" />
 <property name="dependencies">
 <list>
 <bean class="org.geomajas.global.PluginVersionInfo">
 <property name="name" value="Static security" />
 <property name="version" value="1.7.1" />
 </bean>
 </list>
 </property>
 <property name="copyrightInfo">
 <list>
 <bean class="org.geomajas.global.CopyrightInfo">
 <property name="key" value="Geomajas"/>
 <property name="copyright" value="(c) 2008-2010 Geosparc nv"/>
 <property name="licenseName" value="GNU Affero General Public License, Version 3"/>
 <property name="licenseUrl" value="http://www.gnu.org/licenses/agpl-3.0.html"/>
 </bean>
 <bean class="org.geomajas.global.CopyrightInfo">
 <property name="key" value="Apache commons"/>
 <property name="copyright" value=""/>
 <property name="licenseName" value="Apache License, Version 2.0"/>
 <property name="licenseUrl" value="http://www.apache.org/licenses/LICENSE-2.0.html"/>
 </bean>
 </list>
 </property>
</bean>

You can add any other configuration which is necessary in this file, for example configure pipelines,
register services.

Note that when adding dependencies, you should run dependency:tree (or similar) to check for sub-
dependencies and assure the copyrightInfo list remains complete with copyright and license details for
the dependent libraries.

Plug-in web context

Each plug-in can have a configuration file in META-INF/geomajasWebContext.xml which is
automatically included in the web context for the dispatcher servlet. This is used to allow plug-ins to define
additional web endpoints without the need to define servlet entries in web.xml.

The DispatcherServlet allows use of Spring MVC for defining your controllers and views. Any definitions
which are specific to the web tier, should be put in the web context file. The services which are defined
in the application context can also be used.

Face or plug-in

16

A typical context will define the package to scan (note that if the package which contains the controllers was
already scanned in geomajasContext.xml, you will still need to redeclare the scanning to allow controllers
to be picked up). The example context as used for the ResourceController looks like this:

Example 4.2. geomajasWebContext.xml for ResourceController

<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:util="http://www.springframework.org/schema/util"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context-2.5.xsd
http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util-2.0.xsd">

 <context:component-scan base-package="org.geomajas.servlet"/>

</beans>

Plug-in pom
The pom needs to be complete to allow proper release of the plug-in.

The following sections need to be filled in:

• description

• scm

• organization

• mailinglists

• licenses

• issueManagement

• ciManagement

• developers

• repositories

• pluginRepositories

The build should also include the following settings

• properties should contain "<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>".

• the following compiler build plug-in declaration should be used:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>

Face or plug-in

17

 <configuration>
 <encoding>utf8</encoding>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
</plugin>

• The checkstyle plug-in should be activated, using the latest Geomajas style.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.5-DF</version>
 <configuration>
 <configLocation>config/geomajas-checkstyle.xml</configLocation>
 </configuration>
 <executions>
 <execution>
 <phase>verify</phase>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>org.geomajas</groupId>
 <artifactId>geomajas-checkstyle</artifactId>
 <version>1.0.4</version>
 </dependency>
 </dependencies>
</plugin>

• A source jar should be produced.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-source-plugin</artifactId>
 <version>2.1.2</version>
 <executions>
 <execution>
 <goals>
 <goal>jar</goal>
 </goals>
 <configuration>
 <includePom>true</includePom>
 </configuration>
 </execution>
 </executions>
</plugin>

• The jar should include indexes.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>

Face or plug-in

18

 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifest>
 <addDefaultImplementationEntries>true</addDefaultImplementationEntries>
 </manifest>
 <manifestEntries>
 <geomajas-version>${project.version}</geomajas-version>
 <license>AGPLv3</license>
 <more-info>http://www.geomajas.org/ and http://www.geosparc.com/</more-info>
 </manifestEntries>
 <compress>true</compress>
 <index>true</index>
 </archive>
 </configuration>
</plugin>

Many of these requirements can be met by inheriting from the geomajas-parent project.

Plug-in modules
All plug-ins consist of at least two modules, possibly more.

Of module contains the documentation for the plug-in in docbook format. A template module is generated
when you use the geomajas-plugin-archetype.

The actual work should be done in one or more modules. You need more than one module when there is
face specific code in the plug-in.

Plug-in creation
To add a plug-in to the Geomajas project, you should write a proposal which is sent to the Geomajas
developers mailing list (majas-dev). It will be discussed and once some kind of consensus seems to be
reached, you can initiate a vote to allow creation of the plug-in. The vote should contain the following
details

• plug-in name

• plug-in lead

• general description

• technical description

If the persons developing the plug-in don't have commit rights yet, they can get a directory in the sandbox
(a part of our version control system) where they can prove their skills until they get full commit rights.

When the vote is accepted and commit rights are in place, the plug-in can be moved to trunk and a jira
module and continuous integration can be set up. The module should also be added to the aggregate.sh file
(which assures all documentation can be found in one place), and it should be added in the geomajas-dep
pom (until the first release, it should be commented in that file).

To start the actual coding, we have provided a plug-in archetype which can be used using the following
command line (to use the latest release):

Face or plug-in

19

Example 4.3. Create project using GWT Maven archetype

mvn archetype:generate -DarchetypeCatalog=http://apps.geomajas.org/nexus/content/groups/released/

Alternatively, you can use the very latest (snapshot) archetype using the following command.

Example 4.4. Create project using GWT Maven archetype

mvn archetype:generate -DarchetypeCatalog=http://apps.geomajas.org/nexus/content/groups/latest/

You first have to select the archetype you want to build (geomajas-plugin-archetype). Then it will ask you
the "groupId", "artifactId", version and base package. Once you confirmed the settings, the project will be
created in a sub-directory with a name equalling the "artifactId" you choose.

Plug-in state
A Geomajas plug-in has a "state" which indicates the maturity.

• incubating: work-in-progress plug-in which has not reached graduation criteria yet.

• graduated: the plug-in is considered stable, development is active and there is sufficient documentation
to be usable and testing to prove it works.

• retired: t he plug-in is no longer maintained. It can be deprecated or development just stopped for some
reason. Both graduated and incubation plug-ins can become retired, so this does not give an indication
of quality.

All plug-ins start at in the incubating state.

Plug-in graduation
The process for a plug-in to move state from incubation to graduated, is called graduation. In order for a
plug-in to graduate, several criteria need to be met.

The following is a list of plug-in graduation criteria:

• A plug-in requires a maintainer. This is the contact-person for the plug-in. He should watch the mailing
lists and be available for user questions.

• All code should oblige to the programming rules as laid out in the Geomajas contributor guide (code
style, javadoc, check-style, author tags, ...).

• A check must be made to assure all dependencies of the plug-in have their licenses respected. Examples
of issues to consider are compatibility of the license (with the AGPL license for the module) and possible
copyright/license display requirements. All the relevant information needs to be supplied in the META-
INF/geomajasContext.xml file for the plug-in.

• If the plug-in is a face, the copyright information for all plug-ins needs to be included in the user interface
(for example in an "about" box).

• There must be enough documentation for users to easily start using the plug-in without having to ask
the basic questions and the documentation needs to be in the expected location and format (to allow
inclusion in project documentation).

• There must be enough tests available to prove code stability.

Face or plug-in

20

Graduation is an all-or-nothing process. A plug-in either meets all criteria, or it does not. The plug-in
maintainer can propose to graduate a plug-in on the majas-dev mailing list. When there is community
agreement on the proposal, he or she can initiate a PSC vote. A request for graduation can only be vetoed by
including the steps which need to be taken to graduate. Once these steps are taken, the plug-in maintainer
can again propose to graduate.

Plug-in retirement
Plug-in retirement is also handled by a PSC vote. This will typically happen when a plug-in is deprecated
(focus moves to a different plug-in which supersedes the retired one), or when a plug- in maintainer wants
to quit without having someone to follow up. However, anyone can propose to retire a module. This will
normally be denied if the plug-in maintainer is still actively maintaining the module.

Both incubation and graduated plug-in can become retired. Reactivation of a retired plug-in, is of course
possible when a new maintainer can be found. In this case the plug-in becomes an incubation plug-in again
(and the maintainer must have signed a CLA).

21

Chapter 5. JIRA conventions
Basic issue tracker rules

One problem one issue
When you report a problem, please submit one issue per problem. There are various reasons for this,
amongst them:

• The more crowded an issue is, the more likely is it that some problems may get lost over time.

• Different problems are likely to be handled by different people. The more problems you put into the
issue, the more difficult is this issue to handle for all involved parties.

In particular, if you're going to write sentences like "Besides this, I noticed that" or "There are several
problems with....", then please seriously ask yourself whether you should submit multiple issues instead
of a single one.

If you don't follow this rule, be prepared for people asking you to split up your issue.

Provide a meaningful summary
Providing a meaningful summary helps the committers to easily recognize an issue in a list of dozens of
others. Since duplicate issues are draining a lot of work from committers, you should always check if the
issue you wish to report hasn't already been reported. Of course this works best if the summaries of the
existing issues are as descriptive as possible.

Provide a clear description
You, as the submitter of a problem, know exactly what you were doing when you were hit by the problem.
However, most other people probably don't. For instance, they may have a completely different workflow
for doing the same things you are doing.

In order to prevent committers to have to ask back how exactly an issue can be reproduced, it is the task
of the issue's submitter to be as clear on this as possible - preferably by given a step-by-step description.

Filling out the JIRA form
In order to create a new issue, you need to log in to the JIRA issue tracker [http://jira.geomajas.org/].

When creating a new issue, the first thing you will be asked, is to select the project and issue type:

• Project: the project you wish to report an issue for. (usually Geomajas)

• Issue Type: the type of issue you want to report. Is it a bug, task or simply a question? Please be correct
in this.

Then a new form appears with new fields to fill in. The summary and description have been discussed
earlier. As for the other fields:

• Priority: how urgent is the issue? This value can always be changed by the Geomajas committers if they
feel that the priority does not match the issue's impact.

http://jira.geomajas.org/
http://jira.geomajas.org/

JIRA conventions

22

• Due date: not used

• Components: What component do you think the issue relates to? Not necessary to fill this in.

• Affects version: In what version of Geomajas did you encounter the issue?

• Assignee: Assign the issue to someone you believe is best suited to fix the issue.

• The rest is not used.

23

Chapter 6. Setting up your
development environment

Prerequisites

Maven

Geomajas is uses the Apache Maven project management tool for its build and documentation
process. Maven can be downloaded from the Apache project site: http://maven.apache.org [http://
maven.apache.org] Installing Maven is quite simple: just unzip the distribution file in the directory of
your choice and make some environment changes so you can access the executable. More information
for your specific OS can be found at the bottom of http://maven.apache.org/download.html [http://
maven.apache.org/download.html]

Subversion

Geomajas uses subversion as its version control system. Accessing subversion requires you to at least
install a compatible client. There are numerous client solutions available, some as standalone clients and
some as IDE plug-ins:

• Tortoise SVN: an excellent SVN client for Windows (http://tortoisesvn.tigris.org/)

• Subversive: Eclipse plug-in, can be found on the following Eclipse update site (http://
download.eclipse.org/releases/galileo [http://download.eclipse.org/releases/galileo] > Collaboration
Tools)

• Subclipse: Eclipse plug-in, can be found on the following Eclipse update site (http://subclipse.tigris.org/
update_1.6.x [http://subclipse.tigris.org/update_1.6.x])

• IDEA SVN plug-in (part of the default IDEA installation)

The Geomajas repository can be found at https://svn.geomajas.org/majas. The standard SVN repository
layout is followed: trunk, tags and branches. For the latest and greatest code (including GWT face) you
should check out the trunk:https://svn.geomajas.org/majas/trunk.

GWT

The GWT (Google Web Toolkit) software development kit (SDK) should be downloaded from
the Google site: http://code.google.com/webtoolkit/download.html [http://code.google.com/webtoolkit/
download.html]. After downloading you should unzip it in a directory of choice.

Build procedure

Start by recursively checking out the trunk directory to a new local folder with a name of your choice (e.g.
geomajas-trunk). You will see that the source code layout follows the recommended hierarchical layout
structure for multimodule maven projects:

http://maven.apache.org
http://maven.apache.org
http://maven.apache.org
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://maven.apache.org/download.html
http://tortoisesvn.tigris.org/
http://download.eclipse.org/releases/galileo
http://download.eclipse.org/releases/galileo
http://download.eclipse.org/releases/galileo
http://subclipse.tigris.org/update_1.6.x
http://subclipse.tigris.org/update_1.6.x
http://subclipse.tigris.org/update_1.6.x
https://svn.geomajas.org/majas
https://svn.geomajas.org/majas/trunk
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html
http://code.google.com/webtoolkit/download.html

Setting up your
development environment

24

Figure 6.1. Hierarchical project layout

Build the code by running the install command on the pom in the top directory:

geomajas-trunk> mvn install

Figure 6.2. Command prompt after running 'mvn install'

The install procedure will build all code, run all unit tests and install the artifacts in the repository.
Integration tests based on Selenium will also be run.

Eclipse
Eclipse project configurations can be generated using the maven Eclipse plug-in. This requires you to run
the following command:

geomajas-trunk> mvn eclipse:eclipse

After the command has completed, Eclipse project definitions will have been generated for all subprojects
(except the pom projects). These projects can now be imported into Eclipse.

If you will be working with the GWT face, you may want to make use of the GWT Eclipse plug-in
of Google. Detailed instructions can be found on the following site: http://code.google.com/eclipse/docs/
download.html [http://code.google.com/eclipse/docs/download.html]. We have experienced a problem
with the project dependencies in Eclipse, which can be solved by running the gwt:eclipse goal of the GWT
maven plug-in. This goal should be run the GWT project directory: geomajas-gwt-simple or geomajas-
gwt-example (currently in development).

geomajas-gwt-simple> mvn gwt:eclipse

If you run this goal it will install the dependent libraries in the lib folder of the GWT war layout.
Unfortunately, however, GWT does not allow Eclipse to automatically deploy in this folder.

After importing and building the GWT projects, make sure you convert them to GWT projects in the
project properties dialog:

http://code.google.com/eclipse/docs/download.html
http://code.google.com/eclipse/docs/download.html
http://code.google.com/eclipse/docs/download.html

Setting up your
development environment

25

Figure 6.3. Eclipse project properties dialog

Check the "Use Google Web Toolkit" checkbox. The GWT SDK can be configured by clicking on the "
Configure SDKs..." link. After configuration, you should now be able to run the project as a GWT
Web application.

IDEA
The setup in IntelliJ IDEA is quite straightforward and does not require running a separate maven
command. Make sure you use the maven import wizard to open your project, it can be activated from the
File menu "Open project" and selectthe root pom.xml file.

Figure 6.4. Open Geomajas project (replace root directory with your own)

Developing with the GWT face will require you to install the latest version of IntelliJ IDEA (9.0) as this is
the only version that supports GWT 2.0. The IDE will recognize the GWT projects and assign the correct
facet but as always you will have to make your own run configuration (which is fortunately trivial).

Setting up your
development environment

26

Depending on the actual IDEA version, some additional settings have to be done in the project structure
dialog. Apart from specifying the GWT installation directory, there is a specific project setting which has
to be done manually, which is setting the target Web facet to "Web". The project structure for the simple
GWT project should look as follows:

Figure 6.5. Project structure for simple GWT project

After this, you should be able to run and debug the project. Note that this setting is needed for each of the
GWT modules you want to be able to run.

Maven
If you are working with another IDE or not using an IDE, it is always possible to run the example
projects directly from maven. For the Dojo face (geomajas-dojo-simple and geomajas-dojo-example-war)
the maven command is as follows:

geomajas-dojo-simple> mvn jetty:run

This command will start up the Jetty servlet engine, after which you can connect to the process for
debugging.

In a GWT project, you should run the following goal:

geomajas-gwt-simple> mvn gwt:debug

This will start up GWT development mode, debugging should also be possible here.

27

Chapter 7. How to release Geomajas
The Geomajas project consists of many pieces which each have their own release cycle. The most important
parts are the back-end, faces and plug-ins. The example programs, documentation and and build tools also
have individual release cycles.

This chapter tries to explain how to release any of these modules. The procedure is similar for all modules,
but there are some specific checks to be done which only apply for certain parts.

As the releases are done to the Sonatype's nexus repository for open source projects (which is synced to
Maven Central), the following references are a required read:

• Sonatype OSS Maven Repository Usage Guide [https://docs.sonatype.org/display/Repository/
Sonatype+OSS+Maven+Repository+Usage+Guide]

• How to Generate PGP Signatures with Maven [http://www.sonatype.com/people/2010/01/how-to-
generate-pgp-signatures-with-maven/]

The basic procedure is very easy, for the part you want to release, execute the following two commands
(using the next version as parameter, this will make you type less). These steps should be done in a clean
location, it is best to do a fresh checkout.

• mvn -DdevelopmentVersion=1.8.0-SNAPSHOT release:prepare

• mvn release:perform

Before doing the release, you should update the version which is mentioned in the master.xml file (this
version is displayed on the front page of the manual and is not automatically updated). After the release,
this should be updated to the new development version.

At the end of the build, the src/main/resources/api.txt needs to be updated with the file which is put in
target during the build (though the header at the top should remain, with the version updated.

The geomajas-dep pom and aggregate.sh need to be updated for the released and new snapshot versions
respectively.

Remember to comment the snapshot repository in all poms.

The documentation uses the example applications for extracting code which is included in the manual.
This is a circular dependency when it includes the part to be released. It may be useful to do a local build
using the next release version locally, to allow the release the work for the documentation part. You can
do the actual release of the example application at the end.

When releasing the backend core, there may be a problem building the javadocs. The solution can be to
do a local build of the backend using the next release version before doing the actual release.

When releasing the GWT face, make sure the dependency versions are correct in geomajas-gwt-
archetype/src/main/resources/archetype-resources/pom.xml.

Close the staging repository (which makes the artifacts available for testing). When staging several parts,
it is recommended to close each separately. This allows more fine-grained promotion and/or dropping of
artifacts.

When staging is done and the repository closed, start a vote to allow users to test the new artifact.

When the vote failed, drop the repository. Development just continue and the version number is skipped.
The release date in JIRA is actually the staging date.

https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
https://docs.sonatype.org/display/Repository/Sonatype+OSS+Maven+Repository+Usage+Guide
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/
http://www.sonatype.com/people/2010/01/how-to-generate-pgp-signatures-with-maven/

How to release Geomajas

28

When the vote was successful, promote the staged artifacts and announce the release, for the back-end,
this requires the following steps:

1. Upload zip files to sourceforge download area

2. JIRA: Assure the next version exists, mark the current version as released agreeing to move open issue
to the next version.

3. For unstable release: install gwt-example for online trial

4. For stable release: install all demo application for online trial

5. Announce:

• Build announcement message using the following template:

title: Geomajas 1.5.0 technology preview/release candidate/stable released

The Geomajas project is proud to release Geomajas 1.5.0, a technology preview
showcasing the progress we are making towards our next stable build.

The major advances in this version include (indicate major contributors when
appropriate)

• modularization of the system

• introduction of a GWT face

For the full list of changes, see http://jira.geomajas.org/jira/
secure/
ReleaseNote.jspa?version=10131&styleName=Html&projectId=10000&Create=Create

Documentation for this release can be found at http://files.geomajas.org/maven/
1.5.0/geomajas/userguide.html .

Download links can be found at http://geomajas.org/release_1.5.0 .

For the next release we plan to include the following features

• absorb CO2 from the air to reduce global warming

• remove need for system to be powered

Please note that this is an unstable release, all the new features since the previous
stable release may still change and we some new bugs may have been introduced.

If you want to help us, join the discussions on the developer list, list bugs in jira and
make feature requests in our fora. See http://www.geomajas.org/gis-development .

Geomajas is the extensible open source web mapping framework, enabling
integrated GIS solutions for businesses and government.

Feel free to change wording and add useful content.

• Create download image for this version (278x61 pixels).

How to release Geomajas

29

• Add release on download page (remember to name the page "release_1.5.0" with correct version
number).

• For a stable release, update the documentation page.

• For a stable release, update Geomajas wikipedia page.

• Send announcement to majas-dev (plain text).

• Publish on general forum.

• Create news item (without the "Geomajas is..." footer.

• Send mail to jan.pote@geosparc.com to assure Geosparc is informed of the release.

6.

30

Appendix A. Geomajas Contributor
License Agreement

In order for N.V. Geosparc (hereinafter “Geosparc”), a company under Belgian Law having its registered
office at Gaston Crommenlaan 10, box 101, 9050, Gent, Belgium which is registered at the commercial
register in Ghent, n° 0808.353.458, to have a clear understanding on the intellectual property rights
associated with the Geomajas software library (hereinafter “Geomajas Project”) and to clearly determine
the responsibilities and obligations associated with the Contributions (as defined hereinafter), Geosparc
must receive a signed Geomajas Contributor License Agreement of the Contributor (as defined hereinafter)
indicating that the Contributor agrees with the terms and conditions as defined hereunder. This Geomajas
Contributor License Agreement (hereinafter “the Agreement”) intends to protect the Contributor as well
as Geosparc.

Contributor hereby accepts and agrees to the following terms and conditions with regard to past, current
and future Contributions submitted by Contributor to Geosparc, and has accepted the policy “Geomajas
Contributions Policy”

Definitions
When used in this Agreement the following words and or expressions shall have the meaning as stated
hereunder unless the context expressly requires otherwise:

1. “Contributor” means 1/ any individual and/or legal entity that voluntarily submits (a) Contribution(s)
to the Geomajas Project or 2/ any individual legally representing his/her Company.

2. “Contribution” means any original work, including any modification and/or addition to the existing
work that is submitted for introduction in, or documentation of, any of the products owned or managed
by Geosparc, where such work originates from a Contributor. A Contribution may be submitted in
any form of electronic, verbal and/or written communication or documentation, including without
limitation, communication on electronic mailing lists, source code control systems and issue tracking
systems that are managed by or on behalf of Geosparc for the purpose of discussion and improving the
results of the Geomajas Project.

Granted Rights - Representations
1. For the benefit of Geosparc, the Contributor hereby:

a. irrevocably assigns, transfers and conveys to Geosparc all right, title and interest in and to the
Contribution(s). Such assignment includes copyrights (to the extent permitted by applicable
mandatory law) and all other intellectual property rights other than patents and patent applications
(“Patent”), together with all causes of actions accrued in favour for infringement thereof, recognized
by any jurisdiction (“Proprietary Rights”). Without limitation of the foregoing, Geosparc shall be
entitled to determine in its sole discretion whether or not to use the Contribution(s) and to use,
sell, distribute, license, re-produce, re-use, modify, update, edit or otherwise make available the
Contribution(s) as it sees fit, in any manner currently known or in the future discovered and for any
and all purposes;

b. grants (to the extent that under applicable mandatory law, Proprietary Rights cannot be assigned,
transferred or conveyed) to Geosparc and to the recipients of the software incorporating the

Geomajas Contributor
License Agreement

31

Contribution(s) an irrevocable, worldwide, non-exclusive, fully paid-up and royalty-free copyright
license to reproduce, modify, prepare derivative works of, (publicly) display, perform, sub license
and distribute the Contribution(s);

c. grants to Geosparc and to recipients of software distributed by Geosparc a worldwide, non-exclusive,
fully paid-up, royalty-free, irrevocable (except as stated in this Agreement) Patent license to make,
have made, use, offer to sell, sell, import, and otherwise transfer the Contribution(s), where such
license applies only to the Patent claims licensable by Contributor that are necessarily infringed
by the Contributor’s Contribution(s) alone or by combination of such Contribution(s) with other
work of Geosparc. Contributor furthermore agrees to immediately notify Geosparc of any patents
that Contributor knows or comes to know are likely infringed by the Contribution(s) and/or are
not licensable by the Contributor. If any entity institutes patent litigation against the Contributor or
any other entity (including a cross-claim or counterclaim in a lawsuit) alleging that Contributor’s
Contribution(s) or the Geomajas Project work to which the Contributor has contributed constitutes
direct or contributory patent infringement, then any Patent licenses granted under this Agreement
for that Contribution or Geomajas Project work shall immediately terminate as of the date such
litigation is filed.

2. Upon the assignment of the Proprietary Rights and the grant of the license as set forth in this article
2, Geosparc hereby grants a non-exclusive, worldwide, fully-paid up, royalty-free license to make, use
reproduce, distribute, modify and prepare derivative works based on the Contribution(s) of Contributor.

3. Contributor hereby represents and warrants that:

a. In the case that the Contributor is an individual who works in his/her own name the Contributor
guarantees that he/she is legally entitled to assign the Proprietary Rights and to grant the above
license.

b. In the case that the Contributor is an employee the Contributor guarantees that he/she can legally
represent the Company and is entitled to assign the Proprietary Rights and to grant the above license.

c. In the case the Contributor is a Company and the Contributor’s employee(s) or consultant(s) have
rights to intellectual property the Contributor warrants that its employee(s) has waived such rights;

d. each Contribution is the original creation of the Contributor. Contributor represents that each
submission of a contribution includes complete details of any third-party license or other restrictions
of which you are aware and which are associated with any part of the Contribution(s);

e. no claim or dispute has been threatened or filed in connection with the ownership, use or distribution
of the Contribution(s); and

f. the execution of this Agreement does not constitute a breach under any other agreement to which
Contributor and/or its employer is a party, does not require the consent, approval or waiver from or
notice to any third party and does not violate any law or regulation.

Contributor shall immediately inform Geosparc of any facts and/or circumstances of which Contributor
becomes aware that would make the representations and warranties inaccurate or untrue in any respect.

Contributor further agrees that Contributor shall at no time hereafter dispute, contest or aid or assist
third party in disputing and/or contesting, either directly or indirectly, the right, title and interest in any
and all Contributions of Geosparc as detailed in this Agreement.

4. In case that under applicable mandatory law the Contributor retains the moral rights or other inalienable
rights to the Contributions, the Contributor agrees not to exercise such rights without the prior written
permission of Geosparc.

Geomajas Contributor
License Agreement

32

5. In order to ensure that Geosparc will be able to acquire, use and protect its Proprietary Rights as detailed
in this article 2, Contributor will (i) sign any documents to assist Geosparc in the documentation,
perfection and enforcement of its rights, and (ii) provide Geosparc with support and reasonable access
to information for applying, securing, protecting, perfecting and enforcing its rights.

Warranties
EXCEPT FOR THE EXPRESS WARRANTIES DETAILED IN ARTICLE 2, THE CONTRIBUTION(S)
ARE PROVIDED “AS IS” AND NEITHER CONTRIBUTOR NOR THE Geosparc MAKES ANY
WARRANTIES OF ANY KIND TO THE OTHER PARTY, EITHER EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION OF ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Miscellaneous
1. This Agreement shall enter into force upon execution of this document by Contributor. This Agreement

may be terminated by a party if the other party commits a breach of this Agreement provided that if the
breach is capable of remedy termination shall not occur if the breach shall not have been remedied within
90 days of such other party having been given notice in writing specifying the breach and requiring it
to be remedied. The termination of this Agreement shall however remain in full force and effect with
respect to any Contribution submitted prior to the termination date of the Agreement.

2. This Agreement contains the entire agreement between the parties and supersedes all prior or
contemporaneous agreements or understanding, whether written or oral, relating to its subject matter.
 If any provision of this Agreement shall be deemed invalid or unenforceable, the validity and
enforceability of the remaining provisions of this Agreement shall not be affected and such provision
shall be deemed modified only to the extent necessary to make such provision consistent with applicable
law.

3. 4.3.The Agreement is governed by the laws of Belgium, without reference to its conflict of law
principles.

4. Geosparc shall have the right to assign its rights and obligations hereunder to any successor or assignee
of its business or assets to which this Agreement relates, whether by merger, establishment of a legal
entity, acquisition, operation of law or otherwise without the prior written consent of the Contributor.

Please execute (2) original copies of the above document and send this to the following recipient:

Address of recipient

Geosparc

Gaston Crommenlaan 10/101

BE-9050 Ghent

BELGIUM

Geomajas Contributor
License Agreement

33

The Contributor:

Name:

Title (if applicable in case of legal entity):

Full name of legal entity and address registered office (if applicable):

Date:

Signature:

The Company:

Name:

Title (if applicable in case of legal entity):

Full name of legal entity and address registered office (if applicable):

Date:

Signature:

N.V. Geosparc – Register N° BE 0808.353.458

34

Appendix B. Maven repository
The project use the nexus repository manager [http://nexus.sonatype.org/] to store all Geomajas jars and
all dependencies.

The following configuration can be used in your maven profile :

<repositories>
 <repository>
 <id>Geomajas</id>
 <name>Geomajas repository</name>
 <url>http://maven.geomajas.org/</url>
 </repository>

 <!-- uncomment if you want to use Geomajas snapshots, comment for faster builds -->
 <repository>
 <id>Geomajas snapshots</id>
 <name>Geomajas repository</name>
 <url>http://maven.geomajas.org/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
</repositories>

If you do not need access to the snapshot releases, then it is recommended to remove that repository from
your pom (it will make your compilation a little faster).

The Geomajas build has quite a few dependencies which are gathered from several repositories.

Our nexus instance functions as a proxy for the following repositories ;

• maven central: http://repo1.maven.org/maven2/

• java.net repo: http://download.java.net/maven/2/

• jts4gwt: http://jts4gwt.sourceforge.net/maven/repository/

• OSGeo: http://download.osgeo.org/webdav/geotools/

• refractions: http://lists.refractions.net/m2

• smartgwt: http://www.smartclient.com/maven2

• spring milestones: http://repository.springsource.com/maven/bundles/milestone

• spring releases: http://repository.springsource.com/maven/bundles/release

• selenium: http://nexus.openqa.org/content/repositories/releases

• selenium snapshots: http://nexus.openqa.org/content/repositories/snapshots

• hibernate-spatial: http://www.hibernatespatial.org/repository

• JBoss (a.o hibernate): https://repository.jboss.org/nexus/content/groups/public/

http://nexus.sonatype.org/
http://nexus.sonatype.org/

	Geomajas contributor guide
	Table of Contents
	Chapter 1. Developers information
	maven compilation, targets, profiles, variables
	GWT build
	dojo build
	Running the example applications

	Documentation
	API contract
	Versioning
	subversion, commits
	Coding
	Logging
	Unit testing
	Exception handling
	Refactoring
	File encoding
	Other

	Chapter 2. Coding quality and style
	Class, method and variable names
	Comment
	Claim your code
	Code layout

	Chapter 3. Spring usage in Geomajas
	Spring dependency injection
	Bean naming convention
	Initialising the applicationContext

	Chapter 4. Face or plug-in
	Plug-in structure
	Plug-in application context
	Plug-in web context
	Plug-in pom
	Plug-in modules

	Plug-in creation
	Plug-in state
	Plug-in graduation
	Plug-in retirement

	Chapter 5. JIRA conventions
	Basic issue tracker rules
	One problem one issue
	Provide a meaningful summary
	Provide a clear description

	Filling out the JIRA form

	Chapter 6. Setting up your development environment
	Prerequisites
	Maven
	Subversion
	GWT
	Build procedure

	Eclipse
	IDEA
	Maven

	Chapter 7. How to release Geomajas
	Appendix A. Geomajas Contributor License Agreement
	Definitions
	Granted Rights - Representations
	Warranties
	Miscellaneous

	Appendix B. Maven repository

